
AmplideX PCR/CE CFTR Prototype Assay has Broad Coverage for Diverse Populations

- Cystic Fibrosis is an autosomal recessive condition caused by mutations in the CFTR gene.
- More than 2000 CFTR variants have been identified. Disease varies by severity of the mutations, genetic modifiers, and environmental factors. The mutation profiles varies greatly with different population groups.
- Reliable detection of CFTR mutations is crucial to inform disease diagnosis, therapy decisions, carrier screening and pre-natal testing.
- AmplideX PCR/CE CFTR Prototype addresses both European (ECFS guidelines) & US recommendations (ACMG/ACOG guidelines) for CFTR mutation detection.

Asuragen's kit is designed to detect more at-risk couples³ than any other commercial Kit

This product is under development. Performance

specifications have not been finalized

Luminex xTAG® Cystic Fibrosis (CFTR) 71 kit v2

- 1 Based on US population demographics
- 2 % coverage squared for carrier alleles in both
- 3 Predicted at-risk couples (ARC) is calculated from CFTR mutation coverage assuming fully pathogenic alleles

Contemporary View of *CFTR* Variants Emphasizes Quality Over Quantity

"...the number of variants should not be used as a comparator; instead, the focus should always be on sensitivity and specificity (either analytical or clinical) of known pathogenic variants."

Beauchamp et al. (2019)

For additional information about this poster and others from Asuragen, visit https://asuragen.com/eshg-20/

This product is under development. Performance specifications have not been finalized

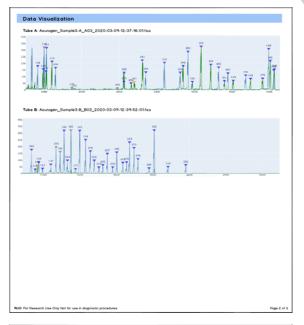
AmplideX PCR/CE CFTR Prototype System includes all necessary Reagents and Software to go from Sample to Results in ~ 5 hours

Pre-Analytics

PCR

CE

Data Analysis

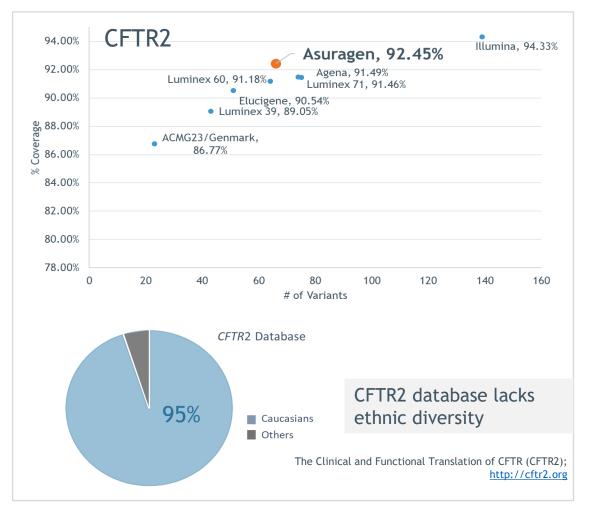


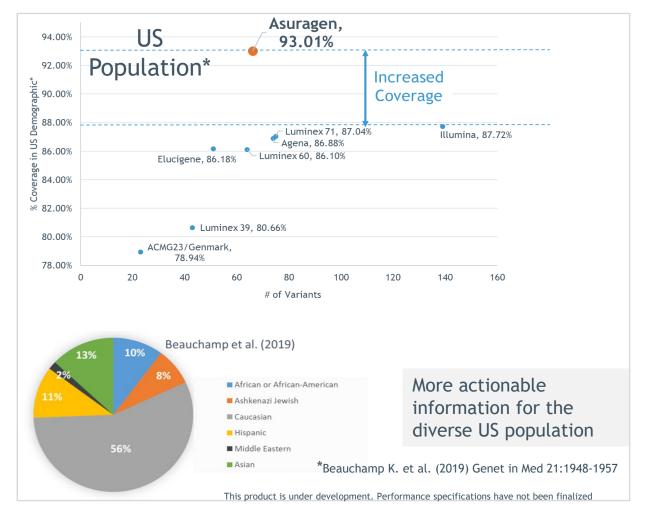
Agnostic DNA isolation approach with conservative sample input requirements

Kit include necessary reagents for both PCR and CE steps and assay is compatible with widely-established instruments

Automated interpretation of results is enabled through push-button analytics modules

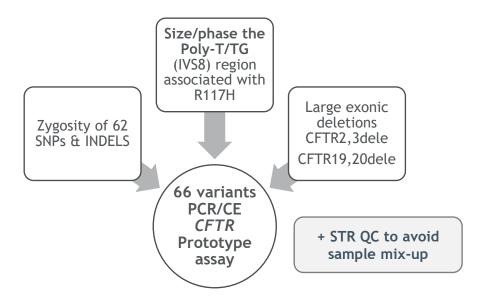
Software Report

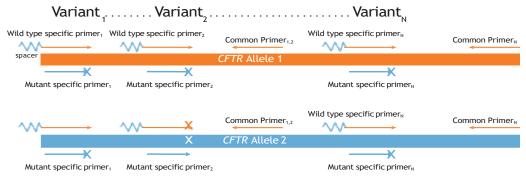

DNA to Data Within One Day

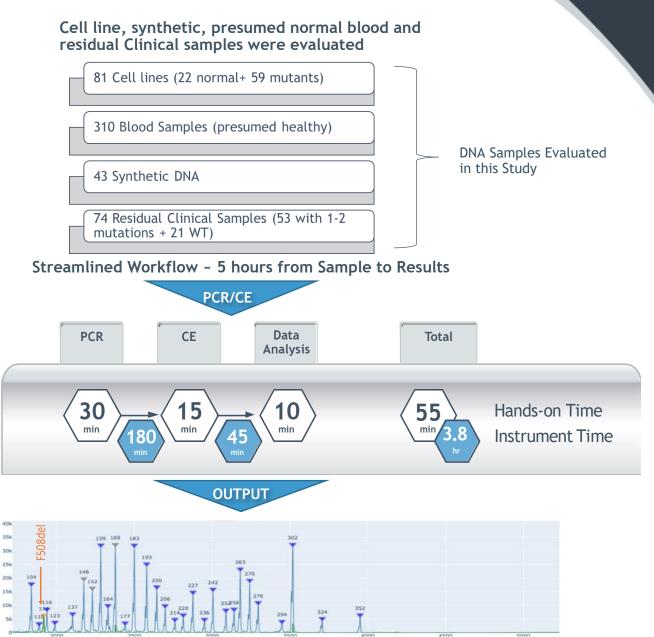

Project Demon Project Askeys Tule A, Tube B Bastrument 35XX Bastrument 35XX	Project Demo Project Beach CFT Butch 1 Beach Address 3 247/200 2 55:50 PM Marked for Renue Folke Analysis Results Semple Well Assay Heatelines Warsets Puly T/TO Semple 43 8 2 POSSenVT, 2657-2/ma/WT	Sample:	Sample	3				
	Beliefs CFTR Bucket Control Solid Analysis Results Semple CFTR Bucket Analysis Results Semple CFTR Bucket Semple CFTR Buc	Batch De	tails					
	Sample West Assay	Batch: CFTR Operator: od Date Analyze	Botch1 min ed: 3/8/202		Instru Samp	ment: 35XX le QC: PASS		
A3	Somple3 A3 A E PS08derWT, 8657-3meA/WT	Analysis	Result	.5				
E3	insured las la la prosessori, association [-	Sample	Well	Assay	Mutations	Variants	Poly T/TG	
Comments		Sample3	A3 83	A B	2	F508del/WT, 2657+3insA\WT		1
No comments.		Commer	nts	â	2	PS08del/WT, 2657+3lnsA\WT	ŀ	

A Rapid Prototype Multiplex PCR/CE Assay and Software System has Broad Coverage of Pathogenic *CFTR* Mutations for Diverse Populations

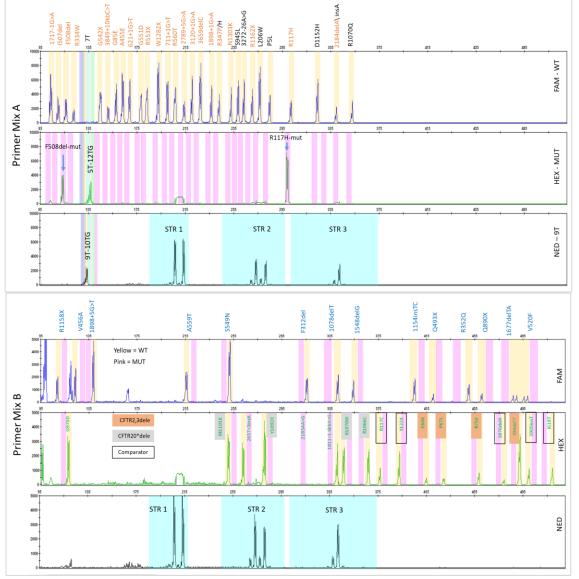
- The AmplideX PCR/CE CFTR Prototype assay genotypes 66 pathogenic variants that address >92% mutant prevalence in an ethnically diverse US demographic and CFTR2.org
- The Prototype addresses both European and US recommendations for CFTR mutation detection
 - o Targets at least one pathogenic mutation in >96% of CF patients as per ECFS guidelines.
 - o Includes all 23 ACMG/ACOG minimum list recommended CFTR mutations.




A Two-Tube PCR/CE Assay was Designed to Detect Multiple Classes of Variants using a Streamlined Workflow, and Evaluated across 508 Samples

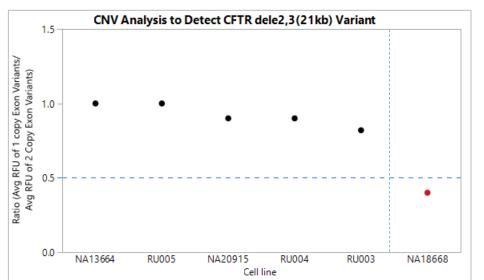

Detects SNPs, INDELs, CNVs and IVS8 poly-T/TG modifier

Allele-specific primers amplify wild-type or mutant allele variants with a set of common primers


This product is under development. Performance specifications have not been finalized

The Prototype Accurately Determined Zygosity for 81 cell lines and >10,500 alleles with 100% Agreement to Reference Results

Prototype PCR/CE CFTR Assay Profile for Two-Tube PCR (Primer Mix A,B) with NA13591, a Compound Heterozygote Mutant F508del & R117H with 5T allele


100% Agreement of Prototype Assay with the Comparator Method for Zygosity and IVS8 Sizing-Phasing

IVS8 Size Distribution and Agreement	10 TG	11 TG	12 TG	Totals
5T	-	2	2	4/4 (100%)
7 T	39	72	10	121/121 (100%)
9T	35	2	-	37/37 (100%)
	74/74 (100%)	76/76 (100%)	12/12 (100%)	162/162 (100%)

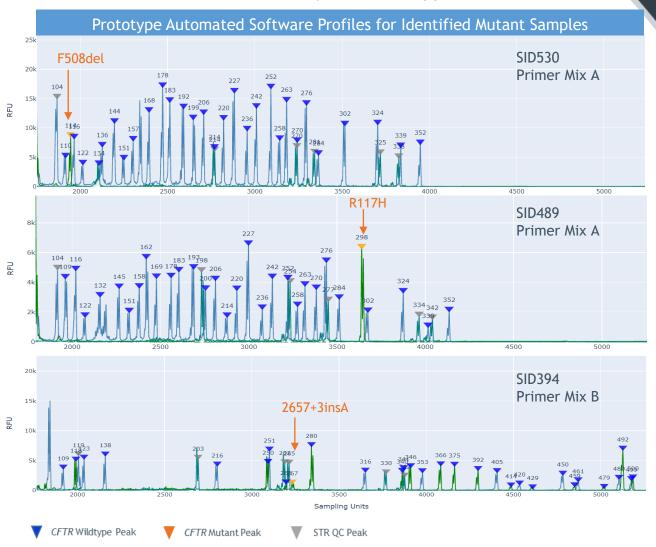
Agreement with			S	anger Sequen	cing	Variant
comparator assay for observed allele peak		Homo	zygous	Heterozygous	Variant Agreement	
		wt/wt	mut/mut	wt/mut		
ay	Homozygous	wt/wt	5114	-	-	5114/5114 (100%)
type TR Ass		mut/mut	-	5 4 var Tube A 1 var Tube B	-	5/5 (100%)
Prototype PCR/CE <i>CFTR</i> Assay	Heterozygous	wt/mut	-	-	65 45 var Tube A 20 var Tube B	65/65 (100%)

Variants R347H/R347P are detected by the same allele specific primers and cannot be differentiated.
2184delA, 2184insA and 2183AA>G are detected by the same allele specific wild type primer but with different mutant primers.

CNV analysis accurately determined CFTRdele2,3 HET variant in cell line NA18668

Ratio of Exon 3 variants (averaged) to Exon 04, 14, 23 variants (averaged) was ~0.4 in this cell line vs 0.8-1 in other wt cell lines shown here.

The Prototype PCR/CE CFTR assay Identified 12 CFTR Carriers from 310 Presumed Normal WB Donors



- The Prototype assay showed 100% agreement of all 12 mutant alleles and IVS8 sizing/phasing with Comparator (Sanger Sequencing).
- Prototype Automated Software accurately identified all 12 mutant variants that were called manually on GeneMapper® software.

Sample ID	Mutant Allele & Zygosity	Allele 1 (T-TG)	Allele 2 (T-TG)	Sanger Sequencing Agreement
SID530	F508del Het	7T-12TG	9T-10TG	✓
SID637	F508del Het	7T-10TG	9T-10TG	✓
SID278	F508del Het	9T-10TG	9T-10TG	✓
SID388	F508del Het	7T-11TG	9T-10TG	✓
SID396	F508del Het	7T-11TG	9T-10TG	✓
SID481	F508del Het	7T-10TG	9T-10TG	✓
SID562	F508del Het	7T-11TG	9T-10TG	✓
SID569	F508del Het	7T-11TG	9T-10TG	✓
SID489	R117H Het	7T-10TG	7T-12TG	✓
SID302	D1152H Het	7T-11TG	7T-11TG	✓
SID301	D1152H Het	7T-11TG	7T-11TG	✓
SID394	2657+3insA Het	7T-10TG	7T-10TG	✓

Observed carrier frequency across reactions was similar to the recently published[†] carrier rate observed in the US population (1 in 26)

	Estimated	Actual
Primer Mix A	1/26*86% = 3.3%, 10-11	11/310 (3.54%)
Primer Mix B	1/26*7.01% = 0.27%, 0-1	1/310 (0.32%)

The Prototype PCR/CE CFTR assay Accurately Determined Zygosity for 74 Residual Clinical Samples with 100% Agreement to an Orthogonal Assay

	Sample Agreement with Reference Assay		xTAG® Cyst			
Agr			Homozygous or Compound Heterozygous		Heterozygous	Overall Sample Agreement
Ref			WT/WT	MUT/MUT	MUT/WT	J
	Homozygous or Compound Het	WT/ WT	21	0	0	21/21 (100%)
Prototype CFTR PCR/CE Assay	Homozygous Compound H	MUT/ MUT	0	18	0	18/18 (100%)
Prototy PCR/CI	Heterozygous	MUT/ WT	0	0	35	35/35 (100%)

- A total of 21 distinct variants were represented in 53 mutated Clinical samples
- All mutations and their zygosity agreed with the reference assay calls

Variants Identified	No. of Samples
F508del	24
D1152H	5
R117H	5
G542X	4
G551D	4
621+1G>T	3 2 2 2
1717-1G>A	2
2789+5G>A	2
3120+1G>A	
3659delC	2 2 2
711+1G>T	2
R1162X	
W1282X	2
1898+1G>A	1
3849+10kbC>T	1
394delTT	1
E60X	1
G85E	1
L206W	1
M1101K	1
R347H or P	1

Note: 13 samples were compound heterozygotes with > 1 mutation