# ASURAGEN TUMOR BANK

## Building Blocks for your Clinical Solution

Archives of formalin-fixed, paraffin-embedded (FFPE) residual clinical tumor specimens represent a valuable resource for biomedical research. Asuragen's tumor bank has over 100,000 FFPE tumor specimens spanning over 100 discrete cancer types.



# >100,000 DIVERSE TUMOR SPECIMENS

Ovarian carcinoma
Breast carcinoma
Non-small cell lung carcinoma (NSCLC)
Colon carcinoma
Malignant melanoma
Sarcoma
Endometrial carcinoma

# ASSOCIATED SPECIMEN DATA AVAILABLE:

Patient demographics Primary/secondary status Basic histology IHC\* FISH (Her2/EGFR)\* Drug resistance data\* Drug sensitivity data\*

\*Not provided for all cases.

### **UTILITY AND APPLICATIONS**

These specimens offer a wealth of diversity for discovery, biomarker research, and diagnostic development projects involving mutation profiling, copy number variation, or other DNA-based applications. Asuragen has demonstrated utility in development of a number of our own tests and services, including our QuantideX® NGS System optimized for DNA extracted from FFPE samples. They can also be utilized for some RNA/protein applications but may not be appropriate for biomarker discovery or identification in these contexts.

# OUR SOLUTIONS DEVELOPED FOR CHALLENGING CLINICAL SAMPLES

### QUANTIDEX® qPCR DNA QC ASSAY

- Quantify functional, amplifiable DNA from challenging FFPE samples
- Guided DNA input for better NGS permanence and results

### **QUANTIDEX® NGS PAN CANCER KIT**

- Robust NGS results from challenging clinical samples
- Up to 100x less FFPE DNA input than other methods
- A complete, targeted NGS workflow & analytics solution

PLEASE INQUIRE FOR TUMOR INVENTORY AND PRICING AT TUMORBANK@ASURAGEN.COM



### TARGETED NGS OF CLINICAL SPECIMENS FROM ASURAGEN'S TUMOR BANK

FFPE specimens form the bulk of samples from cancer biopsies and resections. DNA from fixed samples is typically lower in quality compared to DNA from fresh or frozen specimens and imparts unique challenges for mutational analysis. Next-generation sequencing (NGS) of FFPE DNA offers the opportunity for highly sensitive, comprehensive mutation detection and is particularly suited to address the cellular and molecular heterogeneity of FFPE samples.

#### STUDY DESIGN

The goal of this study was to identify mutations in 35 regions from 16 genes in FFPE cancer specimens using amplicon resequencing. Five specimens from each of five cancer types (breast, colon, lung, melanoma, and ovarian) were analyzed.

#### **FOCUSED GENE PANEL**

| ABL1 | FGFR1 | HRAS | MET  | BRAF | KIT    |
|------|-------|------|------|------|--------|
| AKT1 | FGFR3 | JAK2 | NRAS | FLT3 | PDGFRA |

Table 1: Focused gene panel (previously SuraSeq<sup>™</sup> 500 Cancer Panel) targets mutational hotspot regions in 16 cancer-associated genes. Now available as QuantideX<sup>®</sup> NGS Pan Cancer Kit with 21 genes.

#### **RESULTS**

A targeted panel of commonly mutated regions in 16 oncogenes was PCR-enriched and sequenced using the Illumina NGS platform to identify variants in 25 FFPE tumor bank specimens. Variants identified are listed in Table 2. Mutation frequencies within the samples ranged from 8 - 68%, and detection sensitivity was determined to be as low as 4%.

| Sample ID | Cancer Type | Variant                    | Nucleotide<br>Change | # of Variant<br>Specific Reads | % of Total<br>Reads | Confirmed |
|-----------|-------------|----------------------------|----------------------|--------------------------------|---------------------|-----------|
| RS00855   | COL         | KRAS G13D                  | 29C>T                | 30409                          | 35                  |           |
| RS00857   | COL         | KRAS G12V                  | 32C>A                | 23714                          | 27                  | V         |
| RS00862   | COL         | KRAS G12D                  | 32C>T                | 22420                          | 31                  | V         |
| RS00877   | COL         | KRAS G12S                  | 33C>T                | 26464                          | 43                  | V         |
| RS00859   | LUN         | BRAF V600E                 | 23T>A                | 26593                          | 8                   |           |
| RS00872   | LUN         | KRAS G12V                  | 32C>A                | 13880                          | 35                  | V         |
| RS00858   | MEL         | BRAF V600E                 | 23T>A                | 48747                          | 68                  | V         |
| RS00861   | MEL         | NRAS Q61R                  | 42T>C                | 27848                          | 43                  | V         |
| RS00863   | MEL         | BRAF V600E                 | 23T>A                | 43798                          | 35                  | V         |
| RS00865   | MEL         | NRAS G13R                  | 46C>G                | 34689                          | 27                  |           |
| RS00866   | MEL         | NRAS Q61H<br>PIK3CA H1047R | 41T>G<br>50A>G       | 34784<br>27381                 | 68<br>18            | V<br>NA   |
| RS00869   | OVA         | PIK3CA H1047R              | 50A>G                | 22441                          | 61                  | V         |

**Table 2:** Variants identified in Asuragen's tumor bank FFPE specimens on the Illumina NGS platform and confirmation on the Ion Torrent PGM.

#### CONCLUSION

PCR enrichment and NGS analysis were utilized to interrogate the mutational state of selected regions from 16 oncogenes in 25 FFPE samples from Asuragen's tumor bank, demonstrating suitability for DNA-based analysis in these clinically relevant specimens. Mutations identified were confirmed using an orthogonal NGS platform.

Accurate quantification and high analytical sensitivity of low abundance mutations are important considerations for molecular profiling of cancer. Asuragen's tumor bank offers a large collection of cancer subtypes with associated specimen data available including histology, demographic and molecular characteristics. This diverse sample collection can be utilized in model assays to identify both common and rare variants that may be clinically relevant to a given disease and successfully incorproated into both basic and clinical cancer research.

