

Two Complementary and Scalable PCR-based Workflows Enable Next Generation Sequencing of Cancer-Associated Genes in FFPE Tumor DNA

Gary J. Latham, Elizabeth Mambo, Liangjing Chen, Andrew Hadd, Jeffrey Houghton, Kalyan Buddavarapu, Tiffany Sanford, Julie Krosting, Alex Adai, Lana Garmire, and Ashish Choudhary. Asuragen, Inc., Austin, Texas 78744

SUMMARY

- Next generation sequencing (NGS) has the potential to report low abundance, clinically actionable mutations in heterogeneous, real-world tumor specimens.
- Multiplex PCR enrichment methods were developed with both focused (16 genes, 35 amplicon) and broad (52 genes, 981 amplicon) cancer gene panels for direct sequencing on two orthogonal NGS platforms, the Illumina GAIIx and the Ion Torrent Personal Genome Machine (PGM).
- The two enrichment methods enabled uniform read coverage, high depth sequencing (>1000X), high sensitivity mutation detection (1-3%), and excellent concordance with Sanger sequencing and other mutation confirmation methods using FFPE samples from different tumor types and block ages.
- The results support the utility of sensitive, accurate, and high resolution mutation profiling across dozens to thousands of loci in FFPE tumor specimens.

MATERIALS AND METHODS

Two FFPE-compatible PCR-based enrichment panels were developed. The first was a multiplexed PCR assay that targeted 35 amplicons in 16 cancer genes, including the most common mutations in the MAPK/ERK and PI3K/AKT pathways. The second included nearly 1000 amplicons from 52 cancer genes. Primers were designed to avoid known SNPs, repetitive sequences, and psuedogenes whenever possible, and included adaptor sequences to enable direct sequencing on either the Ion Torrent PGM or the Illumina GAIIx. Samples included cancer cell lines (ATCC) and residual FFPE blocks from various sources collected up to 14 years prior and represented colon, melanoma, breast, and other cancers. FFPE DNA inputs ranging from 10 ng to 2 ug were evaluated for PCR enrichment, and samples were barcoded up to 36plex/lane (GAIIx) or 13plex/chip (PGM). Workflows for GAIIx NGS required ~3-6 weeks, whereas the time from purified DNA to processed NGS data on the PGM was <3 days.

Figure 1. Two distinct PCR enrichment workflows with NGS applications ranging from broad content screening to molecular diagnostics

Oncogene Panel ABL1 FGFR1 HRAS MFT AKT1 FGFR3 JAK2 NRAS BRAF FLT3 KIT PDGFRA FGFR RFT KRAS PIK3CA Table 1. A 16 gene, 35 amplicon panel represents >95% of these ger mutations in COSMIC.

Figure 3 Titration of FEPE tumor DNA reveals dose-dependent detection of mutations to 1-2% of total NGS reads.

Concordance for 39 FFP across KRAS	ce Summary E Samples 5, BRAF, and	Sanger Sequencing		
PIK3CA I	PIK3CA Hotspots		Wt	
Illumina GAIIx	POS	19	3	
	Wt	2	92	

Table 3 Illumina GAIIx NGS of 39 FEPE tumor specimens demonstrate 96% concordance with Sanger seg

DNA Sample	Gene with known mutations	Known Codon Change	Туре	Mixing ratio	Expected % Mutation	Torrent PGM % Recovered	Torrent PGM Read Coverage	Illumina GAIIx % Recovered	Illumina GAIIx Reac Coverage	
A-549	KRAS	G125	HOM	35%	35	31.9	971	29.2	4072	
MIA PaCa-2	KRAS	G12C	ном	20%	20	22.6	971	17.8	4072	
T24	HRAS	G12V	ном	10%	10	10.9	248	13.2	4424	
81/0	BRAF	V600E	HET 15%	7.5	5.9	801	6.5	7772		
KKU	РІКЗСА	H1047R		10.5	6.6	2290	7.9	5896		
SK-Mel-2	NRAS	Q61R	ном	7%	7	10.7	600	11.2	7150	
	PIC3CA	H1047L		HET 5%	2.5	3.5	2290	6.8	5896	
GP2d	KRAS	G12D	HEI		2.5	3.7	991	4.0	4072	
HCT 116	KRAS	G13D		UFT	C N	3	1.5	1024	<0.5	4072
	PIK3CA	H1047R	HEI	HEI 6%	10.5	6.6	2290	7.9	5896	
SW1116	KRAS	G12A	HET	2%	1	1.4	991	1.3	4072	

Table 4. Ion Torrent PGM and Illumina GAIIx NGS quantitatively recovers known mutations from pooled cancer cell DNA

Concordanc for 16 FFP across RAS.	e Summary E Samples BRAF, and	Orthogonal Confirmation	
PIK3CA Hotspots		POS	Wt
lon Torrent PGM	POS	15	0
	Wt	1	91

Table 5. Ion Torrent PGM NGS of 16 FFPE tumor specimens demonstrates 99% concordance with confirmation assays, including Luminex Signature®, Illumina and Sanger sequencing

16 Gene Cancer Panel

same locus.

70x10³

A)

Total Re

Median

2-fold o

5-fold o

Table 2. Both intact cell line DNA and FFPE DNA demonstrate A) uniform

Figure 8. Variant fractions detected by NGS in matched frozen and FEPE tumor DNA are highly correlated. Variants were identified by Illumina GAIIx NGS following RainDance enrichment of 981 amplicons spanning 52 cancer genes.

CONCLUSIONS

- rapid turnaround time (<1 week).

Figure 4. High depth NGS of BRAF amplicons clearly delineates mutation positive samples, including those that are negative by Sange sequenc

Figure 5. Representative variant profile of mutation-positive and negative FFPE tumor DNA revealed by Ion Torrent NGS. Mutations identified on the Illumina GAIIx were confirmed on the Ion Torrent PGN

52 Gene Cancer Panel

Oncogene and Tumor Suppressor Panel							
BL1	DNMT3A	GNAQ	MET	PTCH1	TP53		
(T1	EGFR	HIF1A	MPL	PTEN	VHL		
(Т2	ERBB2	HRAS	NF2	PTPN 11			
RAF	FES	IDH1	NOTCH1	RB1			
DH1	FGFR1	IDH2	NPM1	RET			
DK4	FGFR3	IKBKB	NRAS	SMAD4			
(N2A	FLT3	JAK2	PAX5	SMARCB1			
BPA	FOXL2	кіт	PDGFRA	SMO			
EBBP	GATA1	KRAS	PIK3CA	SRC			
INB1	GNA11	MEN1	PIK3R1	STK11			

Figure 6. A 52 gene. 981 amplicon cancer panel compatible with massively parallel picodroplet PCR. Amplicons designed for genes shown in bold were ced across all coding exon

	CRC FFPE1	CRC FFPE1 (replicate)		
ıds	7,654,272	5,601,478		
eads/amplicon	6375	4471		
median	57%	57%		
median	91%	91%		

Figure 7, Picodroplet PCR of FFPE DNA using a 981 amplicon cancer panel supports reproducible, ultra deep NGS using the Illumina GAII

• Two distinct PCR workflows enabled high depth and enabled uniform enrichment and high depth NGS of cancer-associated gene regions in FFPE DNA from residual clinical specimens.

Mutation loads as low as 1-3% were accurately identified in both cancer cell line and FFPE tumor DNA; "background" variant detection was only 0.3%. These results have important implications for detection of low-level mutations, such as drug-resistant mutations, that may be clinically relevant.

PCR-based enrichment of cancer gene "hotspots" in FFPE tumors revealed 96-99% concordance with orthogonal reference methods, including Sanger sequencing.

Ion Torrent NGS successfully confirmed novel mutations from screening studies using the Illumina GAIIx, suggesting utility for high sensitivity orthogonal mutation confirmation using distinct enrichment procedures and NGS sequencing chemistries.

The two proposed NGS approaches can accommodate both large-scale, whole exon mutation assessments for ~96 samples per run, as well as "hotspot" mutation analyses across more than a dozen genes with a