

High Sensitivity Detection of Clinically Actionable Mutations in FFPE and FNA Tumor Biopsies Using Two Orthogonal Next Generation Sequencing Procedures

Jeffrey Houghton, Liangjing Chen, Andrew Hadd, Elizabeth Mambo, Sachin Sah, Kalyan Buddavarapu, Tiffany Sanford, Julie Krosting, Lana Garmire, Ashish Choudhary, Alex Adai, and Gary J. Latham Asuragen, Inc., Austin, Texas 78744

SUMMARY

- Next generation sequencing (NGS) can provide comprehensive and massively parallel analysis of molecular alterations in oncogenes and tumor suppressor genes associated with cancer pathway signaling.
- Complementary and scalable enrichment procedures for direct amplicon sequencing of "druggable" cancer genes were developed for FFPE and Fine Needle Aspiration (FNA) specimens across two orthogonal NGS platforms.
- PCR enrichment procedures enabled uniform coverage across SuraSeq[™] 200, SuraSeq[™] 500, SuraSeg[™] 7500 and Ion AmpliSeg[™] cancer gene panels, with NGS read depths of >1000X and detection of variants representing as few as 1-3% of reads.
- The results support the utility of high sensitivity, high resolution mutation assessments across thousands of loci in heterogeneous FFPE and FNA tumor specimens.

rdance with orthogonal assays

SuraSeg[™] 500

ABL1	I FGFR1 HRAS		MET
AKT1	FGFR3	JAK2	NRAS
BRAF	FLT3	KIT	PDGFRA
EGFR	RET	KRAS	PIK3CA

Table 2, A 16 gene, 35 amplicon panel represents 540 unique mutations and >95% of all mutations in these genes listed in COSMIC.

Concordance Summary for 20 FNA Samples across RAS and BRAF Hotspots		Orthogonal Confirmation		
		POS	Wt	
DCM.	POS	13	1*	
PGM	Wt	1**	80	
Relow LOD by Sanger sequencing				

Figure 3. Ion Torrent PGM NGS of 20 FNA specimens demonstrates 98% concordance with confirmation assays, including Sanger sequencing,

Category	Intact DNA (N=27)	FFPE DNA (N-=39
Average Depth	38,500	24,500
Maximum	72,738	44,747
Minimum	1,784	3,432
Range within 5-fold of average	95%	95%
Median Variant	0.27%	0.32%

Figure 2. Total mapped reads on a 316 chip across 13 barcoded specimens using the Ion Torrent PGM. NTC = Non template control

MIA PaCa-2 KRAS G12C HOM 20% 20 22.6 971 17.8 4072

7% 7 10.7

2.5 3.7

G12V HOM 10% 10 10.9

Table 3. NGS of Ion Torrent and Illumina GAIIx qualitatively and

quantitatively recovers known mutations from pooled cancer cell DNA.

30% 40%

% of Mutated Residual FFPE DNA

FFPE DNA Bac

971 **29.2** 4072

600 **11.2** 7150

991 4.0

4424

4072

4072 1.3

VHL

248 13.2

10.5 6.6 2290 7.9 5896

2.5 3.5 2290 **6.8** 5896

 3
 1.5
 1024
 <0.5</th>
 4072

 10.5
 6.6
 2290
 7.9
 5896

991

25.90

SRC

HET 15% 7.5 5.9 801 6.5 7772

DNA Gene with Known Sample known Codon Type ratio Mutation PGM %

A-549 KRAS G12S HOM 35% 35 31.9

SW1116 KRAS G12A HET 2% 1 1.4

PIK3CA H104

KRAS A146"

: •

in an U

MIA

RKO

GP2d

HRAS

BRAF V600E

PIK3CA H1047R

KRAS G12D

PIK3CA H1047R

HCT 116

PIC3CA H1047L HET

SK-Mel-2 NRAS Q61R HOM

TP53	PTCH1	MET	GNAQ	DNMT3A	ABL1
VHL	PTEN	MPL	HIF1A	EGFR	AKT1
	PTPN11	NF2	HRAS	ERBB2	AKT2
	RB1	NOTCH1	IDH1	FES	BRAF
	RET	NPM 1	IDH2	FGFR1	CDH1
	SMAD4	NRAS	IKBKB	FGFR3	CDK4
	SMARCB1	PAX5	JAK2	FLT3	CDKN2A
	SMO	PDGFRA	КІТ	FOXL2	CEBPA
	SRC	PIK3CA	KRAS	GATA1	CREBBP
	STK11	PIK3R1	MEN1	GNA11	CTNNB1

Figure 6, A 52 gene, 981 amplicon panel represents 7500 unique mutations. Amplicons designed for genes shown in bold were sequenced across all coding exons

SuraSeg[™] 7500

Figure 8. Twelve known cancer gene mutations from 12 residual clinical FFPE samples are highly correlated after enrichment with SuraSeq[™] 7500 and SuraSeq[™] 500 panels and NGS on different

PGM			M	GAIIx				
		SuraSeq [™] 200	SuraSeq [™] 500	lon AmpliSeq™	SuraSeq [™] 500	SuraSeq™ 7500 (100ng)	SuraSeq [™] 7500 (1000ng)	
	SuraSeq [™] 200	1	0.96	0.94	0.98	0.81	0.97	
PGM	SuraSeq [™] 500	0.96	1	0.90	0.96	0.80	0.94	
	lon AmpliSeq™	0.94	0.90	1	0.96	0.93	0.95	
	SuraSeq [™] 500	0.98	0.96	0.96	1	0.83	0.97	
GAIIx	SuraSeq [™] 7500 (100ng)	0.81	0.80	0.93	0.83	1	0.90	
	SuraSeq [™] 7500 (1000ng)	0.97	0.94	0.95	0.97	0.90	1	
	Known Input	0.93	0.97	0.93	0.91	0.88	0.89	

Figure 10. Mutation guantification using distinct PCR enrichment panels and NGS platforms is highly correlated using known input cancer gene nutations for pooled cell line DNA (Tables 3, 5).

CONCLUSIONS

- from residual clinical specimens.
- variant detection was only ~0.3%.
- using orthogonal methods.

• The three proposed enrichment approaches can accommodate both large-scale, whole exon mutation assessments in ~96 samples per run, as well as "hotspot" mutation analyses across 15-50 genes with a rapid turnaround time (<1 week).

MATERIALS AND METHODS	
Three FFPE and FNA compatible PCR-base	ed

enrichment panels were developed. The first two were multiplexed PCR assays that targeted 8 amplicons in 5 cancer genes or 35 amplicons in 16 cancer genes, including the most common mutations in the MAPK/ERK and PI3K/AKT pathways. The third included nearly 1000 amplicons from 52 cancer genes. Primers were designed to avoid known SNPs, repetitive sequences, and pseudogenes whenever possible, and included adaptor sequences to enable direct sequencing on either the Ion Torrent PGM or the Illumina GAI/x. FNA DNA inputs from 10 ng or FFPE DNA inputs from 10 ng to 2 ug were evaluated for PCR enrichment, and samples were barcoded up to 36/lane (GAI/x) or 13/chip (PGM). Workflows for GAI/x NGS required ~3-6 weeks, whereas sample processing on the PGM required <3 days.

Table 4. Both intact cell line DNA and FFPE DNA demonstrate low levels of "background" base substitution variants (0.3%).

Ion AmpliSea[™]

ABL1

AKL

Table 4. Ion Torrent AmpliSeq[™] is a 46 gene, 190 amplicon panel that represents 739 mutation

highly correlated across operators and sequencing chips. AmpliSeq" multi-sample barcoding was not available for the samples processed.

DNA Sample	Gene with Known Mutations	Known Codon Change	Туре	Mixing Ratio	Expected % Mutation	lon Torrent AmpliSeq [™] % Recovered	Ion Torren AmpliSeq Read Cov (316)
4.540	KRAS	G125		350		34.1	14945
A-549	SKT11	Q37*	HOM	35%	35	31.2	9269
	KRAS	G12C				18.6	14945
MIA PaCa-2	TP53	R248W	HOM	20%	20	15.1	6816
T24	HRAS	G12V	HOM	10%	10	15.9	1132
	BRAF	V600E			7.5	9.4	22294
KKU	PIK3CA	H1047R	HEI	15%	10.5	14.7	566
SK-Mel-2	NRAS	G61R	HOM	7%	7	12.4	8178
GP2d	PIK3CA	H1047L	HET	5%	2.5	7.2	566
	KRAS	G12D			2.5	5.6	15295
UCT 116	KRAS	G13D	UET	6% 3 10.5	3	1.9	18602
nui 116	PIK3CA	H1047R	HEI		10.5	14.7	566
SW1116	KRAS	G12A	HET	2%	1	1.8	15295

ble 5. Ion AmpliSea™ enrichr mutations from pooled cancer cell DNA following PGM NGS.

Figure 7. SuraSeq[™] 7500 recovers the full range of expected SNF fractions from pooled HapMap DNA in a Latin square titration, identifying 209 SNPs (for each of six cell lines) across 1254 data points. Mixing ratios were designed such that the majority of SNPs were <20% abundance. Expected SNP fraction is based on results from individually sequencing each HapMap cell line.

Figure 9. As little as 250 ng FFPE DNA supports high depth NGS ving SuraSeq[™] 7500 enrichment

• Three distinct PCR workflows enabled high depth enrichment of cancer-associated gene regions in FFPE and FNA DNA

• Mutation loads as low as 1-3% can be accurately identified in both cancer cell line and FFPE tumor DNA; "background"

• PCR-based enrichment of cancer gene "hotspots" in FFPE and FNA tumors revealed concordance in mutation detection

• Ion Torrent NGS successfully confirmed novel mutations from screening studies using the Illumina GAIIx, suggesting utility for high sensitivity orthogonal mutation confirmation using a second NGS system.

• SuraSeq[™] cancer gene panels supported a streamlined protocol, low DNA inputs, multiplex target amplification, and, importantly, efficient multi-sample barcoding, even on the Ion Torrent PGM. Thus, SuraSeq[™] focused gene panels offered high depth sequencing for multiple samples per run, compared to lower depth reads for singleplex AmpliSeq[™].