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OVERVIEW
Asuragen has developed bioinformatics tools for migrating candidate biomarkers discovered using a microarray platform to a clinically 
relevant, quantitative real-time PCR [reverse transcriptase (RT)-qPCR] platform. These tools take into account the fact that different 
platforms may measure the expression level for a gene differently due to platform-specific technical variance and noise. Without 
the consideration of such noise, an inefficient classifier may emerge from the platform migration. Successful migration requires the 
selection of biomarkers and models that will be most adaptable to platform transitions. This paper highlights the key steps needed to 
translate genomic signatures into clinically robust predictive models.

CONCLUSIONS
In this paper, we described our results for predicting those biomarkers with the highest cross-platform correlation and greatest likelihood 
for successful migration. Our data indicated that the migration of candidate biomarkers was affected by variance (i.e., expression 
difference) associated with both the discovery (microarray) and more diagnostic-ready (RT-qPCR) platforms.

In conclusion, bioinformatics modeling tools can enhance discovery efforts and the development and selection of biomarkers by 
improving the efficiency of biomarker migration, and by improving estimates of the number of samples needed to adequately power 
studies designed for such goals.
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INTRODUCTION
Assay migration of expression markers from a high content 
platform (microarrays) to a low content platform (RT-qPCR) is a 
three step process that includes the identification of biomarker 
candidates using a discovery platform, migration of the 
biomarker candidates to a RT-qPCR platform, and validation of 
the biomarker classifier on a test set of samples (See Figure 1). 

How many samples does the study need? Biomarker 
discovery is a prerequisite to any clinical test. In this step, it is 
critical to estimate the number of samples needed to generate 
a well powered predictive model. Sample size planning and 
statistical powering require that specific performance metrics 
[e.g., sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), area under the curve (AUC), 
etc.] be derived at the outset of the study in order to establish 
clear go or no-go criteria for each phase of the project. Once 
these aims are established, an initial microarray study is 
performed to determine if there are any significant differentially 
expressed genes between groups. If only small, insignificant 
differences in gene expression between groups are observed, 
then either more samples must be tested in order to increase 
the statistical power of candidate gene discovery or the study 
must be redesigned. An adequately powered study is then 
performed, enabling the selection of biomarkers for accurate 
classification of the discovery groups. When selecting 
biomarkers, it is important to consider the changes in model 
performance that accompany model and signature migration 
to a platform with inherently different detection properties. 

Will the performance of the model change if it is migrated from 
microarray to RT-qPCR? The answer hinges upon the relative 
magnitudes of the technical noise from the two platforms. 
Correlation between RT-qPCR and microarray expression data 
is generally good, especially when identical transcript regions 
are targeted by both methods.1 Probe sequence and relative 
transcript abundance have been observed to be important 
sources of variability between platforms.2 However, in contrast 
to mRNA, prior studies have found weaker correlation of 
microRNA expression measurements between microarray 
and RT-qPCR3, with low-expressing microRNAs in particular 
showing high variation between assays. In general, RT-qPCR 
measurements show better sensitivity and specificity for 
microRNA expression compared to microarrays.3 

Our work addresses how the platform correlation and the noise 
between platforms can affect the power and the sample size 

estimates for both mRNA and microRNAs. This is important 
because the development of robust diagnostic assays relies 
upon the successful migration of biomarker candidates from 
high content discovery platforms, such as microarrays, to 
conventional diagnostic platforms such as RT-qPCR. 

For example, to develop a binary classifier on a mRNA 
data set with the most significant genes exhibiting ~2-fold 
differential expression (~1 normalized log2-expression unit) 
and a microarray-estimated within-group standard deviation 
of ~0.5 normalized log2-expression units, recently developed 
methods suggest that a conservative estimate of the required 
number of samples is about 30 to generate a classifier whose 
accuracy is within 10% of the best possible if platform migration 
is not anticipated.4 To get within 1% of maximal performance, 
the estimated number of samples that are needed increases 
to more than 50.4 If the model is to be migrated to a different 
platform, however, and the differences in technical variance 
between the microarray and RT-qPCR platforms are taken 
into account, our methods yield a conservative estimate of 
50 samples required for classifier development for accuracy 
within 10% of the theoretical maximum and 90 samples 
required for performance within 1% of optimum.5

This example of a conservative sample size estimate in 
anticipation of platform migration is derived from the assumption 
that the genes with the best performance on microarrays may 
exhibit larger technical variation when assayed by RT-qPCR. 
This assumption can, in some cases, be quite conservative, as 
many genes show higher technical noise when measured by 

Figure 1. Overview of the assay migration process from microarrays 
to RT-qPCR. The additional noise from the qPCR platform must be 
considered when powering the original biomarker discovery study. 
Ideally, the migration would occur with the same samples used in 
the Biomarker Discovery phase. Finally, the model is validated on an 
independent sample set to establish clinical performance.



3

microarrays. While we generally recommend this conservative 
approach for sample size planning, we have found that it can 
be useful to estimate both “conservative” and “optimistic” 
bounds for migrated classifier performance, with the optimistic 
bounds (for which migrated performance will be superior to 
microarray performance) based on the opposite assumption 
that technical noise is much larger on the microarray platform 
than the RT-qPCR platform.

STUDY DESIGN
We have developed bioinformatics analysis methods and 
conducted several studies involving the migration of biomarker 
panels from a microarray platform to RT-qPCR platforms. 

Data sets 
Two data sets were used for this study: 

1.	An mRNA data set available in the public domain 
generated from 36 colon biopsies.6,7 

2.	A microRNA data set generated from 33 thyroid 
formalin-fixed paraffin-embedded (FFPE) specimens 
and processed at Asuragen. 

Estimating required sample sizes for classifier 
construction on migrated platform 
We applied bioinformatics methods to both data sets to 
estimate the target variance and to predict the number of 
samples required for training a classifier on a second platform. 

Platforms
TaqMan RT-qPCR was used to assess expression levels of 67 
mRNA and 34 microRNAs. Genome-wide mRNAs expression 
profiles were evaluated by HGU133 Plus 2.0 microarray 
(Affymetrix), while Agilent miRNA V.3 microarrays were used 
as the microRNA discovery platform. 

Normalization
For the mRNA data set, data normalization was performed 
using RMA.8 For the microRNA data set, data was normalized 
and filtered according to the standard in-house procedure9 
using the Variance Stabilization method.10

In order to align the microarray and PCR analysis, a normalizer-
estimated normalization factor was subtracted from the RMA-
normalized microarray expression values. This procedure 
aligned the microarray and RT-qPCR on similar scales except 
for a scale factor of -1. RT-qPCR data was reported as cycle 

threshold (Ct) values which are inversely proportional to the 
amount of target RNA whereas microarray signal intensity was 
positively correlated with concentration of target RNA.

RESULTS
Estimating the impact of platform migration on sample 
size estimates and model performance 
Based on work by Dobbin et al. [4], we developed methods 
for determining the number of samples needed for a discovery 
study to build a classifier for a RT-qPCR platform. We estimated 
the number of samples required based on the relative magnitude 
of biological signal to platform migration-induced noise.

Figure 2 shows the results from theoretical sample size analysis 
which considered the influence of the attenuation factor. The 
“Attenuation Factor” indicates the ratio of a conservative 
estimate of the migrated standardized effect size to the array-
estimated standardized effect size. Standardized effect size is 
defined as log-fold change divided by within-group standard 
deviation. This modeling shows that for classifiers based on 
biomarkers whose effect sizes are of similar magnitude to 
the noise levels associated with platform migration (roughly 
corresponding to the attenuation factor ~0.57 in the case 
plotted), the number of samples required to train a model to 
within a specified range of the optimal model performance (left 
panel) may be approximately double that estimated without 
taking migration into account. For example, with a standardized 
effect size of 2 (log-fold change twice as large as within-group 
deviation), the estimated required number of samples per group 
with an attenuation factor of 0.57 is 68, versus an estimated 
requirement of only 32 per group if no migration is required. 

Figure 2. Theoretical modeling of sample number estimation based on 
the relative magnitude of biological signal to platform migration-induced 
noise. Left panel: Number of samples per group required to reach a 
standardized effect size. Right panel: Predicted classifier accuracies at 
varying standardized effect sizes and attenuation factor values where 
classifier is based on 5 biomarkers with 15 samples per group. 
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Furthermore, in such a high-platform-noise (low-attenuation 
factor) case, the optimal model performance (right panel) 
targeted by this powering methodology may also be severely 
degraded relative to expectations ignoring migration: it is 
important to know whether the model being powered has any 
chance of providing the desired level of performance, and 
platform migration should be taken into account. 

Predicting cross-platform correlation 
We have identified expression level variance as an important 
factor in predicting cross-platform correlation. Figure 3 
captures the basic relationships between microarray and RT-
qPCR data in terms of correlation between platforms. The 
biological variance is directly related to the platform correlation: 
as the platform correlation decreases and approaches perfect 
correlation between platforms [1.0 Pearson correlation 
coefficients (PCC)], the standard deviation (representing the 
differential measurement between the groups) increases. 
The platform correlation improved substantially when the 
biological signal exceeded twice the level of noise associated 
with platform migration (as represented by red vertical lines 
in Figure 3). The blue line represents the predicted Pearson 
correlation coefficient (PCC). This illustrates the use of the 
bioinformatics modeling tool for the prediction of how well 
the discovery and RT-qPCR platforms will correlate based on 
platform noise and the variance of a gene. In support of results 
reported by others3, we also observed better agreement 
between microarray and RT-qPCR for mRNA than for the 
miRNA data.

CONCLUSIONS
Biomarkers with the greatest differential measurement 
between groups (i.e. cancer versus benign) will have larger 
changes in expression levels, and such differences are more 
likely to be observed on another platform. This is especially 
important because a candidate biomarker determined to be 
highly significant from microarray analysis and hypothesis 
testing may be a poor candidate for a classifier on a RT-
qPCR platform. This scenario arises if the candidate gene is 
significant only as a result of a modest effect size, combined 
with very small within-group variance. Our results show the 
trend of better platform correlation with larger variance. 
However, noisy platforms mute modest signals: therefore, 
to have an impact, this variance must be greater than the 
noise inherent in the platforms. We found that the correlation 
between microarray and RT-qPCR improves substantially 
when the biological signal exceeds twice the level of noise 
associated with platform migration. In our manuscript5, we 
elucidate metrics to better predict whether a model (and its 
corresponding predictive power) can successfully migrate 
between platforms.

Bioinformatics modeling tools can enhance discovery efforts 
and the development and selection of biomarkers by improving 
the efficiency of biomarker migration, and by improving 
estimates of the number of samples needed to adequately 
power studies designed for such goals.
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Figure 3. Important factors for predicting cross-platform correlation 
include expression level variation. Each point represents the Pearson 
correlation coefficient (PCC, absolute value) of microarray- and RT-
qPCR log-expression values as a function of microarray log-expression 
standard deviation estimates. Red vertical lines are placed at twice the 
level of noise associated with platform migration. Blue lines illustrate PCC 
values predicted by modeling on the basis of standard deviation alone.
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