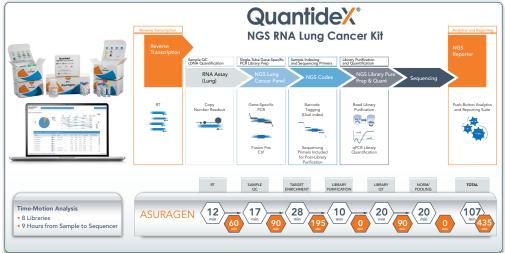
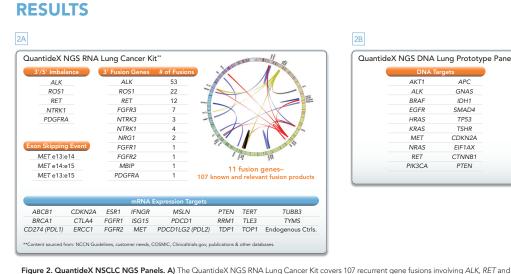
A MODULAR NEXT-GENERATION SEQUENCING TECHNOLOGY THAT COMBINES TARGETED ENRICHMENT AND BIOINFORMATICS ANALYSES TO REVEAL RNA EXPRESSION AND DNA MUTATIONS IN LUNG CANCER

Brian C Haynes¹, Richard Blidner¹, Robyn Cardwell¹, Shobha Gokul¹, Julie Krosting¹, Blake Printy¹, Robert Zeigler¹, Liangjing Chen¹, Junya Fujimoto², Neda Kahlor³, Vassiliki A Papadimitrakopoulou⁴, Ignacio I Wistuba², and Gary J Latham¹ ¹Asuragen, Inc., Austin, TX, ²Department of Translational Molecular Pathology, ³Department of Pathology, ⁴Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

SUMMARY


- The QuantideX[®] NGS System^{*} enables broad, sensitive and accurate profiling of RNA and DNA from challenging clinical research specimens.
- Analysis of 273 NSCLC specimens from 3 clinical cohorts was performed using the QuantideX[®] NGS RNA Lung Cancer Kit^{*} and a prototype DNA lung panel.
- Molecular features identified by QuantideX NGS were consistent with disease subtype and analytically concordant with an independent NGS method.

INTRODUCTION


RNA fusions and aberrant splicing events, such as MET exon 14 skipping, are important therapeutic targets in non-small cell lung cancer (NSCLC) and other solid tumors. Quantification of RNA variants can complement DNA analyses to capture the dynamic molecular state of tumor cell populations and inform treatment strategies. We describe a novel targeted next-generation sequencing (NGS) technology that offers both modularity and systems-level integration to achieve accurate RNA and DNA profiling from challenging clinical specimens.

MATERIALS AND METHODS

Formalin-fixed, paraffin-embedded (FFPE) or fine-needle aspiration (FNA) specimens from three cohorts, including the BATTLE-2 clinical trial, were collected at MD Anderson Cancer Center. BATTLE-2 tissues were also sequenced using FoundationOne® (Foundation Medicine). Pre-analytical QC was performed using novel qPCR assays that quantify distinct populations of amplifiable RNA and DNA from total nucleic acid. RNA or DNA was enriched by PCR using the QuantideX NGS RNA Lung Cancer Kit, or a prototype DNA panel with common non-primer-based reagents, and sequenced on a MiSeq® System (Illumina). Data analysis was achieved using QuantideX® NGS Reporter, an analysis suite that directly incorporates pre-analytical QC data into the variant calling algorithm to improve the identification of DNA mutations and RNA fusions

wn. The prototype targeted DNA-Seq workflow follows an identical process but excludes the reverse transcription step and enlists a DNA-

genes selected from NCCN guidelines, COSMIC prevalence and NSCLC literature

Cal

% MET e14 Skipping Cells

4B

FALSE

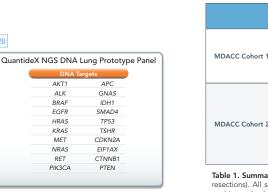
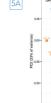



Table 1. Summary of targeted RNA-Seq results in two FFPE NSCLC clinical cohorts. MDACC Cohort 1 (CNBs) and MDACC Cohort 2 (surgical resections). All specimens with detected fusion or MET e14 skipping events are shown with 10/215 (4.7%) of the evaluable specimens testing positive and only 3.6% of specimens failing QC.

BATTLE-2 ID	Mutation	%Variant	FMI Call
B2_002	<i>TP53</i> p.Y163H	63.3	+
B2_023	BRAF p.G469A	14.6	N/A
B2_026	KRAS p.A59E	34.7	+
B2_026	TP53 346*	29.9	+
B2_027	TP53 p.S241fs*6	14.6	N/A
B2_044	TP53 p.G245C	87.6	+
B2_060	TP53 p.P190L	24.5	+
B2_060	EGFR p.E746_A750delELREA	54.0	+
B2_076	TP53 p.G245C	95.2	+
B2_078	TP53 p.R273P	41.9	+
B2_084	TP53 p.L348F	51.9	+
B2_091	TP53 p.R273H	18.9	+
B2_103	EGFR p.L858R	72.0	+
B2_103	EGFR p.T790M	39.4	+
B2_103	<i>ТР53</i> р.Т126Н	25.4	+

CONCLUSIONS

Supported in part by Cancer Prevention Institute of Texas (CP120017)

Figure 4. Multi-omic characterization of MDACC cohorts using the QuantideX NGS RNA Lung Cancer Kit and the DNA Lung Cancer Prototype Panel. A) MDACC Cohort 1 (CNBs). B) MDACC Cohort 2 (surgical resections). Mutations identified in both cohorts were consist with the underlying histopathology. For example, DNA mutations in KRAS, EGFR and RNA fusions involving ALK, RET and ROS1 were restricted to adenocarcinomas. Note that SQ 9 (NRAS mutant) in Cohort 1 was characterized as a poorly differentiated NSCLC with squamous cell carcinoma features, whereas SQ_28 (KRAS mutant) was identified as a poorly differentiated NSCLC with adenocarcinoma features (TTF1+, p40-).

Figure 1. Overview of the QuantideX NGS workflow from nucleic acid quantification to variant analysis. Workflow for the RNA Lung Cancer specific bioinformatic analysis module

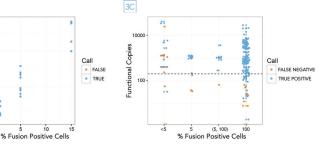
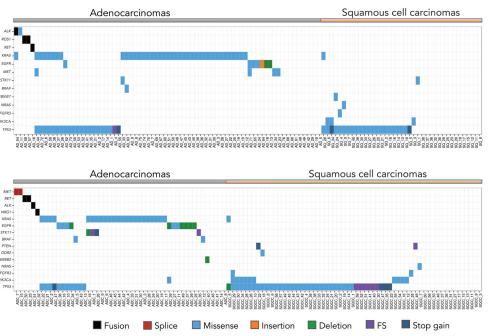



Figure 3. QuantideX NGS RNA Lung Cancer Kit Analytical Performance. Admixture of A) MET exon 14 skipped cell line or B) EML4-ALK positive FFPE in the background of wild-type cells with positive detection down to 1 in 100 cells. C) Libraries prepared with <200 functional copies are at risk for false-negative calls. The dashed line indicates the minimum recommended input of 200 functional copies.

ROS1, MET e14 skipping and 23 mRNA markers of clinical research value. B) The prototype NSCLC DNA-Seq panel covers 55 hotspot regions in 20

Cohort QC Status		Specimen	QC	Fusion	Imbalance	MET e13:15		
		At Risk						
113 78		27	8	AD16	At Risk	KIF5B-RET	None	N
	70			AD54	Pass	EML4-ALK	ALK	N
	/0			AD57	Pass	EZR-ROS1	None	N
				AD58	Pass	CD74-ROS1	None	N
110 109		09 1	0	ADC7	Pass	None	None	Y
				ADC15	Pass	None	None	Y
	100			ADC23	Pass	CCDC6-RET	RET	Ν
	109			ADC32	Pass	CD74-NRG1	None	N
				ADC50	Pass	KIF5B-RET	RET	N
				ADC51	Pass	EML4-ALK	ALK	N

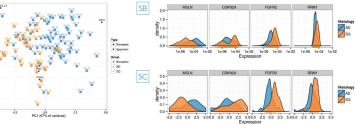


Figure 5. Select mRNA expression markers revealed by targeted RNA-Seq distinguish squamous cell carcinomas (SQ) from adenocarcinomas (AD). A) PCA analysis of 4 mRNA markers over MDACC Cohort 1. B) TCGA and C) MDACC Cohort 1 shows similar SQ and AD distributions for

BATTLE-2 ID	Mutation	%Variant	FMI Call
B2_108	KRAS p.G12C	33.3	+
B2_108	TP53 p.E294D	49.6	+
B2_108	TP53 p.E294fs*12	49.7	+
B2_117	KRAS p.G12C	50.9	+
B2_120	KRAS p.G12V	21.9	+
B2_120	TP53 p.R248Q	21.0	+
B2_121	KRAS p.G12C	86.1	+
B2_121	TP53 p.G154V	71.0	+
B2_143	EGFR p.T790M	21.8	N/A
B2_143	TP53 p.Y234C	21.8	N/A
B2_143	EGFR p.L747_E749delLRE	23.9	N/A
B2_145	TP53 p.H214R	63.7	N/A
B2_147	CTNNB1 p.S37F	17.8	+
B2_147	MET p.T1010I	59.0	-
B2_324	PIK3CA p.E545K	11.3	N/A

Table 2. BATTLE-2 DNA variants from FoundationOne NGS analysis of tissue specimens were in 97% agreement with Asuragen targeted DNA-Seq results from FNA smears. Smears contained only ~100 to a few hundred cells with 24/50 yielding sufficient material for sequencing. By comparison, "FMI Call" refers to variants identified by FoundationOne using tissue of higher quality/quantity and less challenging to sequence Samples without FMI call data are indicated as "N/A"

• The QuantideX NGS System is a highly sensitive and accurate technology for the comprehensive characterization of clinical research specimens.

• Sample-Aware[™] bioinformatics flags libraries at risk of false-negative calls, enabling confident evaluation of low-input, poor-quality specimens.

• The QuantideX NGS System is a modular and extensible framework to develop targeted RNA and DNA assays for precision medicine applications.

