Deep Analytical Characterization of a BCR-ABL1 minor Breakpoint (e1a2) Multiplex Assay
(QuantideX ${ }^{\circledR}$ qPCR BCR-ABL minor Kit) using a Background of Human RNA Reference Material
Michael Dodge, Ion Beldorth, Stela Filipovic-Sadic, Keri Masson, Marie Fahey, John Hedges, and Justin T Brown Asuragen, Inc., Austin, TX

Summary

- This BCR-ABL1 e1a2-targeting assay improves workflow with its streamlined reagent formulation and multiplex assay format, and generates results sufficient for studies in deep molecular
responses for minor breakpoint. responses for minor breakpoint.
The assay's limits were characterized deeply and in the context of background RNA matching the tissue of interest.
of reduction.

Introduction
Clinical research on molecular response in CML and B-ALL requires a highly optimized assay with well Clinical research on molecular response in CML and B-ALL requires a highly optimized assay with well
characterized analytical limits and will catalyze improved monitoring strategies. OBJECTIVE: BCR-ABL1 e1a2
 positive precursor B -cell acute lymphoblastic leukemia (Ph+ B -ALL) and chronic myeloid leukemia (CML).
Researchers require a reproducible assay for minor breakpoint that accurately calls molecular responses of ≥ 4 logs of reduction. However, interpretation of clinical research data sets can be confounded by use of different assays whose limits ser not well characterized in the context of the tissue of interest (human leukocyte RNA). We describe analytical validation and method comparison of a multiplex system reporting continuous BCR-
ABL1:ABL1 \%ratio values via automated analysis. ABL1:ABL1
Methods We developed reagents for RT-qPCR, with both steps performed on the ABI 7500 Fast Dx. Armored RNA Quant We developed reagents for RT-qPCR, with both steps performed on the ABI 7500 Fast DX. Armored RNA Qua
(ARQ) molecules form a blend of nuclease-resistant BCR -ABL1 and ABL1 transcripts used to calibrate and (ARQ) molecules form a bend of nucleas--resistant BCR-ABL1 and ABLL transcripts used to calibrate and
control the system. Multiplexed 4 -point curves using A RQ blends provide $B C R$-ABL1 and $A B L 1$ copy values control the system. Muttipexed 4-point curves using ARQ blends provide BCR-ABLT and ABLI copy values
and account for the batch hun-specific efficiency of the RT step. Controls (high, low, negative) were also
developed. For most validation studies herein, cell-line RN Positive for ela2 was diluted into non-leukemic developed. For most validation studies herein, cell-line RNA positive for e1a2 was diluted into non-leukemic
leukocyte human RNA specimens to create challenge panels for precision, LOD, LOQ, and linearity studies.
 BCR/ABL1 Quant Test (RUO). Software was also developed that automatically analyzes raw SDS files for \%ratio values and contains a logic algorithm that flags any specimen requiring further review.

Results

 Conclusions
-The QuantideX GPCR BCR-ABL minor assay showed sensitive, multiplex detection of e1a2 and - The QuantideX qPCR BCR-ABL minor assay showed sensitive,
ABL1 with copy number and BCR-ABL1:ABL1 \%ratio values.

- Limits were determined in a background of human RN
Li.0010\%. LOD $=0.0025 \%$. LOQ $=0.0036 \%$.
.
- Single-site precision was acceptable at all levels through the dynamic range.
- A method comparison demonstrated good concordance and correlation with a previously developed assay.

