Validation of a Complete Solution for BCR-ABL1 Monitoring of Both Major and Minor Breakpoints that Reports ABL1 Copy Number

Ion Beldorth, Michael Dodge, Stela Filipovic-Sadic, Keri Masson, Marie Fahey, John Hedges, Bernard Andruss, and Justin T Brown* Asuragen, Inc., Austin, Texas, USA

Summary
The Quantide ${ }^{\circledR}$ qPCR BCR-ABL Portfolio improves workflow with streamlined reagent formulation and multiplex assay format, and generate results sufficient for studies in deep molecular responses for Major and minor breakpoints.
The assays' limits were extensively characterized using background human RNA matching the tissue of interest.
Robust and reproducible assays for Major and minor breakpoints accurately assess molecular responses of ≥ 4.5 logs of reduction.

Introduction

Quantitation of BCR-ABL1 e13a2 and/or e14a2 (Major breakpoint, $M-B C R$) and e1a2 (minor breakpoint, m-BCR) fusion transcripts of $\mathrm{t}(9 ; 22)$ assesses tumor burden in CML. As the extent of the efficacy of TKI therapy has been demonstrated over the past 2 decades, it has become evident that deep analytical sensitivity is required to assess response and clearance. Further, interpretation of clinical and research data sets can be confounded by use of different assays whose limits are not well characterized in the context of the tissue of interest (human leukocyte RNA). We describe the analytical validation of a multiplex system for Major breakpoint providing continuous ABL1 copy and MR values, analytical sensitivity $>$ MR4.5, and direct traceability to the WHO Primary BCR-ABL1 materials. We also describe analytical validation of a multiplex system for minor breakpoint reporting continuous ABL1 copy and \%ratio values with analytical sensitivity of >4.5 logs. These studies were performed using human RNA background materials.

Methods

We developed reagents for RT-qPCR for Major and minor breakpoints. Armored RNA Quant ${ }^{\oplus}$ (ARQ) molecules form a blend of nuclease-resistant BCR-ABL1 and ABL1 transcripts used to calibrate and control the system. Multiplexed 4-point curves using ARQ blends provide BCR-ABL1 and ABL1 copy values and account for the batch run-specific efficiency of the RT step. Controls (high, low, negative) were also developed. For Major breakpoints, a single 4-point curve using ARQ blends mimics the WHO Primary BCR-ABL1 reference materials. A lot-specific $2^{-\Delta c t}$ calculation provides ABL1 copies/qPCR for evaluation of endogenous control levels. For minor breakpoint, two multiplexed 4-point curves using ARQ technology provide BCR-ABL1 and ABL1 copy values. For most validation studies herein, either human RNA positive for a Major breakpoint or cell-line RNA positive for minor breakpoint was diluted into non-leukemic leukocyte human RNA specimens to create challenge panels. Software was also developed that automatically analyzes raw SDS files for ratios and contains a logic algorithm that flags any specimen requiring further review. Validation studies were performed on the ABI 7500 Fast Dx for both RT and qPCR steps.

Results

Figure 2. Limit of Blank (LOB) studies. Testing was adapted from CLSI EP17-A2. Major
breakpoint LOB was estimated by testing 30 separate, non- leukemic human RNA specim breakpoint LOB was estimated by testing 30 separate, non-leukemic human RNA specimens.
Testing spanned 3 lots, 4 operators, 9 runs, 4 calendar dayss and 4 qPCR instruments yeielding

 LOD" at MR5.71 (0.0002\%15) and MR5. 35 (0.0000\%\%IS). This yielded an LOB at the 95\%ile of
"Undetected (Sufficient ABL1)" for Major (95% Cl of $97.0-99.9 \%)$. The two positive results were reported as "Undetected" when repeated in two subsequent runs eaca. Panel A:
ABL 1 copies observed in the LOB study. Within-lot and between-lot variability across al Were reported as enved icted LOB struy. Within-lot and between-lot variability across all
AB1 copies observed
ABL1 measurements was assessed visually. Individual points are shown in a jitter plot with ABL1 measurements was assessed visually. Individual points are shown in a jitter plot wilh
transparency. Minor breakpoint LOB: We tested 4 unique non-leukemic human RNA specimens
resumed to be negative for BCR-ALL. Testing spanned 2 lots, 2 operators, 3 runs, 2 calend

 (Sufficient ABL1)" and 24 were positive for BCR-ABL1. The LOB was determined by classi
non-parametric
anking specimens that show ≤ 1 copy /qPCR BCR-ABL1 may be indistinguishable from non-leukemic
specimens. LOB for $\%$ ratio by classical non-parametric ranking at the 95% ie was 0.0010% specimens. LOB for \%ratio by classical non-parametric ranking at the 95% ile was 0.0010%
(LR5.00) (data not shown). Panel B: We assessed the level of unexpected positivity after application of the LAB in 2 steps. Excluding speciment ≤ 1 copy/PPCR CCR -ABL 1 generated no
\%rationalues $\leq 0.00010 \%$ Overall unexpected
which ranged from 1.1 to 2.4 copies/qCR. 3A

Figure 3. Limit of Detection (LOD) and Limit of Quantitation (LOQ) studies. Testing was
adapted from CLSI EP17-A2. Panel A: LOD for Major in human RNA. Four (4) separate BCR.
 human CML-negative RNA specimens to create a panel. Each of the 28 dilution levels was
lested a total of 60 times at 1000 ng/RT. Testing spanned 2 lots, 4 operators, 40 runs, 15 cested a total of 60 times at 1000 ng/ RTT. Testing spanned 2 lots, 4 operators, 40 runs,
caledr days, and 4 qPCR instruments. This yielded 1680 possible measurements. The
fited Probit model is shown. This analysis estimates 950 positity (itted Probit model is shown. This analysis estimates 95% positivity at MR4.74 (95\% Cl +0.03)
corresponding to 0.0018%. The positivity estimate of MR4.7 was maintained for each corresponding to 0.0018%. The positivity estimate of MR4.7 was maintained for each lot
and for each of the two transcripts (e1 1322 and e 1422 and and via the non-parametric method described in CLSI EP17-A2 (while controlling the type II error at 5%.) The \% \%V for samples
at or near the LOD range was 73%. LoQ was determined to be MR4.87 (0.0016%) (data not
 shown); therefore, LoQ was constrained by LOD as MR4.7. Panel B: ABL1 copies observed
in the LOD study. Within-lot and between-lot variability across all 1680 ABL 1 measurements was assessed visually using a Stingray plot. Individual points are shown in a jitter plot with
transparency and then overlaid with violin plots of the points' distributions. Note that there transparency and then overlaid with violin plots of the points' distributions. Note that there
is biological and process variability contributing to the distributions; specifically, identical
 Lends (process). LOD for minor in a human RNA background: SUP-B15 e1a2 positive cell
Line RNA was diluted into four unique human CML-negative RNA samples and then tested at $1000 \mathrm{ng} / \mathrm{RT} T$, spanning 2 lots, 3 batch hruns, 2 days, , operators, and 2 instruments. (One panel
member contained an analyte level below the anticipated LOD and was therefore excluded member contained an analyte level below the anticicipated LOD and was therefore excluded
from LOD analysis.) The log.transformed LR values were normally distributed (Shapiro-wilk

 LOD in a cell line R RA background: SUP-B15 RNA was dilited into HL-60 RNA. Using the same
method described above, we obtained an estimated LLD of 0.0005% (LR5.31) across 80 valid measurements (with 66 detectable \%ratio values). Further, one specimen was 95% positive
(19/20) at a mean of 0.0008% (LR5.11). Determination of LOQ in a human RNA background, $(19 / 20)$ at a mean of 0.0008% (LR5. 11). Determination of $L O Q$ in a human RNA backgrounc
Panel D: The LOO was estimated using the same specimens used in the LOD assessment above. The lowest analyte level that passed the acceptance criteria ((LD $\leq \leq .36$ at L RR4. 25 or
greater) measured
LR44. 45 , which supports an
LOO of 0.0036%. Informational assessment of greater) measured LR4.45, which supports an LOQ of 0.0036%. Informational assessment of
LOD in a cell line RNA background: Using the same method described above, we obtained
 observations indicate that the use of cell line background RNA for sensitivity studies is not as challenging as the matrix of interest, human RNA.

Figure 4. Precision Studies. Testing was adapted from CLISI EPO5-A3. Panel A: Multi-site
Precision for Major. Five dilution series were constructed with five samples in each pool (at each dilution level) for a total of 25 samples. Each sample was evaluated at 3 sites by 2 operators making quintuplicate measurements on 2 days for a tota of of 750 measurements. Overall, the determination of MR values was reproducible within all variables tested (the
maximum observed standard deviation was 0.099 for a single specimen at the MR4 target level). This supports the testing of specimens in singleton in the test. Panel B: Singlesite Precision for minor. SUP-B15 e1a2 positive cell Line RNA was diluted into human
CML-negative RNA and tested at 1000 ng/RT. Testing was adapted from CLSI EPO5-A3 and CML-negative RNA and testers
spaned 3 lots, 2 operators, 8 runs, 8 days, and 2 qPCR instruments, generating 192 valid spanned 3 lots, 2 operators, 8 runs, 8 days, and 2 PPCR instruments, generating 192 valid
measurements. The observed variabilty is displayed in the tables above, one expressed
in \%ratio and the other in L R values. Overall, measurements were reproducibe within all in \%ratio and the other in $L R$ values. Overall, measurements were reproducible within alt
variables tested. We note that there were two outlier replicates in the data set, both for the
specimen targeted to 0.1%. When these were removed from the analysis, total \%cV changed specimen targeted to 0.1%. When these were removed from the analysis, total \%cV changed
from 51 to 32%.

Figure 5. Analytical Specificity (Exclusivity) for QuantideX® 9 PCR BCR-ABL minor Kit. $000 \mathrm{ng} / \mathrm{RT}$, across 2 lots of kit 2 operators, and 2 days, generating 54 valid , or ALL at As seen in the table in Panel A , undiluted cell line RNA specimens known to express a very ligh level of the Major breakpoints e 1 3az and e e14az generated positive signal for e1a2 at low
levels in this assay. The primer sites in e1 and a2 exons exist within e13az and e14az RNA; owever, the reaction is predicted to be inefficient due to the larger amplicon and therefore cross-detects at a low level. To determine the level at which Major-breakpoint-positive
specimens become specimens become undetectable in the minor breakpoint assay, multiple dilutions of e13a2-
positive and e 14 ad -positive residual clinical human R RA RNA were tested in parallel between Asuragen's BCR-ABL1 assays and the results are displayed

Clinical Specimen Accession ID	BCR/ABL1 Quant Test (Major \& minor)	QuantideX ${ }^{\ominus}$ qPCR BCR-ABL minor Kit	QuantideX ${ }^{\oplus}$ qPCR BCR-ABL IS Kit (Major)	Interpetation
PE75	0.0091% (R44.04)	0.01668 (123.78)	Undetected (sufficient ABL1)	minor only
${ }^{\text {PE76 }}$	2.10388 (LR1.68)	$\begin{gathered} 3 / 3 \text { were }<\text { LOD at } 0.0011 \% \\ \text { (LR4.96) } \end{gathered}$	3.1434855 (MR1.50)	$\begin{gathered} \text { predominantly } \\ \text { Major } \end{gathered}$
PE77	Undetected (sufficient ABL1)	Undetected (sufficient ABL1)	Undetected (sufficient ABL1)	undete
PE78	15.7903\% (R0.80)	266\% (R3. 58	30.872\%55 (M80.51)	predominantly Major
PE79	19.6958\% (R0.71)	26.307\% (180.58)	Undetected (sufficient ABL1)	minor only
PE80	Undetected (sufficient ABL1)	Undetected (sufficient ABL1)	Undetected (sufficient ABL1)	undetected
${ }^{\text {Pe81 }}$	Undetected (sufficient ABL1)	Undetected (sufficient ABL1)	Undetected (sufficient ABL1)	undeta
P882	Undetected (sufficient ABL1)	$\begin{gathered} 2 / 3 \text { were }<\text { LOD at } 0.0005 \% \\ \text { (LR5.30) } \end{gathered}$	Undetected (sufficient ABL1)	undetected
PE83	0.0997\% (R3.00)	0.2728% (R2.65)	Undetected (sufficient ABL1)	minor or
P884	Undetected (sufficient ABL1)	$\begin{gathered} 3 / 3 \text { were } \times \text { LLOD at } 0.0016 \% \\ \text { (LRA. } 79) \end{gathered}$	Undetected (sufficient ABL 1)	$\begin{gathered} \text { undetected } \\ \text { (possible high neg) } \end{gathered}$
P885	0.0350% (R3).46)	0.1083\% (12.00)	Fail (low ABLI)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { minor only (low } \\ \text { ABL1) } \end{array} \\ \hline \end{array}$
PE86	${ }^{1.3097 \% ~(L R 1.86) ~}$	1.3615% (LR1.87)	Undetected (sufficient ABL1)	minor
PE87	0.0003% (LR4.45)	0.0067% (RR4.18)	Undetected (sufficient ABL1)	minor only
Pe88	Undetected (sufficient ABL1)	$\begin{aligned} & 1 / 3 \text { was <LOD at } 0.0004 \% \\ & \text { (LR5.44) } \end{aligned}$	Undetected (sufficient ABL1)	undetec
PE89	0.0018% (R4.76)	0.0032\% (RR4.63)	$\begin{gathered} \text { Undetected } \\ \text { (sufficient ABL1) } \end{gathered}$	minor ory
Pe90	0.0220\% (LR3.66)	0.049\% (1R3.32)	Undetected (sufficient ABL1)	minor orit
Pe91	$>$ LOQ at 60.1958\% $($ LR0.22)	0.0299% (LR3.53)	$>$ LOQ at 88.3307% $($ MRO.05 $)$	predominantly Major

Figure 6. Method Comparison for QuantideXe ${ }^{\text {q. PCR BCR BC-ABL minor Kit. De-identified blood }}$ specimens were acquired through a 6 -site collection protocol with IRB approvals for any individual with e1a2 confirmed previously by an unnamed, independent method. Specimen both the Test (across 3 lots, singleton per lot) and a unique reagent set as a comparator (both the est (across 1 ots, singleton per lot and a unique reagent set as a comparator (1 ,
lot in singleton of BCR/ $A B 1$ Quant CE IVD). The Test quantifies minor breakpoint (ela2), and the comparator reagent set
between them. Concordance assessment (Panel B). Fourteen (14) specimens were between them. Concordance assessment (Panel B). Fourteen (14) specimens were
correlated. Discrepancy analysis on the 3 non-correlated specimens demonstrated that they
wer hishly were highly positive in a test specific for Major breakpoints. The remaining 14 specimens
were fully concordant (6 <LOD in both assays, 8 measurable in both assays), for an overall were fully concordant ($(6 \times$ LoD in both assays, 8 measurable in both assays), for an overall
agreement of 100%. Correlation plot (Panel A A). Samples that were positive in both assays (and negative for Major breakpoint) are charted. Ad ottted, dark green unity line is shown for
reference. Six undetected (LLDO) data sets are ont reference. Six undetected ((LOD) data sets are not shown. The 8 measurable ela2 specimens
were highty correlated for $L R$ values (slope near $1, y$-intercept near 0 , Pearson R of 98.5%). Bias appeared minimal and uniform. Table of measurable and qualitative results across multiple tests (Panel B). Where replicates were performed across 3 lots (minor kit), the
mean is shown for $\%$ Is and geometric

Conclusions

The QuantideX ${ }^{\circledR}$ qPCR BCR-ABL IS Kit and QuantideX ${ }^{\circledR}$ qPCR BCR-ABL minor Kit showed sensitive, multiplex detection of Major and minor breakpoints with ABL1 copy number and BCR-ABL1:ABL1 values.
Limits were determined in a background of human RNA specimens

Major, LOB = Undetected. LOD $=0.0020 \%$ (MR4.7). LOQ = 0.0020\% (MR4.7)
minor, LOB = 1 copy/qPCR and 0.0010\% (LR5.0). LOD $=0.0025 \%$ (LR4.6). LOQ $=0.0036 \%$ (LR4.4) Precision was acceptable at all levels through the dynamic range.
A method comparison for minor breakpoint demonstrated concordance and correlation with a previously developed, CE-marked IVD kit.

Major and minor breakpoint assays are CE marked for IVD use.
This project has been funded in part with Federal funds from the National Cancer Institute,
National Institutes of Health, Department of Health and Human Sevices, under Contract No. NHSN261201500009C.

