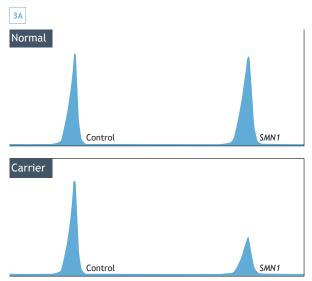
A Rapid, High-throughput PCR Fragment-sizing Assay for Quantifying Spinal Muscular Atrophy (SMN1, SMN2) Copy Numbers

Results


<u>Stela Filipovic-Sadic</u>, Ion Beldorth, and Michael Dodge Asuragen, Inc., Austin, Texas, USA

Summary

- Spinal muscular atrophy is a lethal autosomal recessive disease resulting from *SMN1* (5q13.2) disruptions, with deletions comprising most cases.
- Multiplex Ligation-dependent Probe Amplification (MLPA) is the most common current methodology for *SMN1* assessment. Unfortunately, this approach requires technical rigor, a 2-day workflow, and relatively high costs.
- Herein we describe prototype assays (AmplideX® PCR/CE SMN1 and SMN2*) that quantify >3 gene copy numbers in under three hours and can be combined with FMR1 repeat genotyping.

PCR CE DATA TOTAL 20 CE DATA ANALYSIS TOTAL

Figure 2. Assay Workflow. The process takes less than 3 hours per 24 well injection, and less than 6 hours for an entire 96 well plate. No unconventional steps, reagents, or equipment are required.

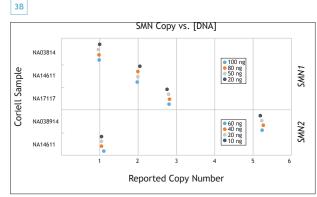
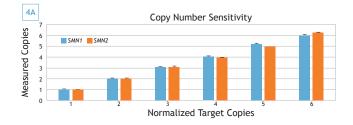



Figure 3. Quantification of SMN1 in Cell-line and Blood-Derived DNA. A) Example raw trace outputs from Normal (NA14611), Carrier (NA23687), and SMA (NA23689) annotated Coriell samples. B) Calculated copy number; response is linear across a range of DNA input levels.

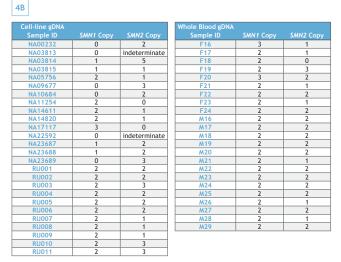


Figure 4. Copy Number Quantification in Synthetic, Cell-Line and Whole Blood Samples. A) SMN7 and SMN2 gBlocks (IDT) titrated into a negative human DNA background (NA20232 or NA11254) are quantifiable up to 6 copies. B) Calculated copy number of additional cell-line and blood samples. All outputs matched previously reported copy numbers (where available).

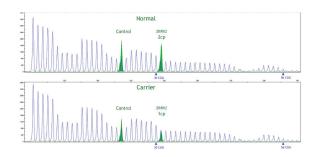


Figure 5. SMN1 and FMR1 PCR Products are Easily Resolved and Quantified Following Co-Injection. SMN1 peaks (Normal: NA14820 and Carrier: NA03815, 20 ng/PCR) are highlighted in the FMR1 (30, 56 CGG, 40 ng/PCR) overlay.

Conclusions

- Prototype AmplideX[®] PCR/CE SMN1 and SMN2 reagents can correctly quantify gene copy numbers in Coriell and bloodderived samples.
- Resolution achieves at least 3-5 *SMN1/2* copies, with an optimal range of 20-80 ng of input material.
- FMR1 PCR products can be co-injected, allowing simultaneous assessment of two of the most relevant genes used in carrier screening.
- Turn-around-time is significantly faster than comparable PCR/CE technologies using a simple workflow.

Introduction

Spinal muscular atrophy (SMA) is a progressive neuromuscular disease and the primary genetic cause of infant death. The illness's etiology is characterized by loss-of-function mutations to Survival Motor Neuron gene 1 (*SMN1*), commonly manifesting as deletions that minimally encompass exon 7. A virtually identical gene, *SMN2*, can partially compensate for this event but requires an otherwise rare alternative splice variant to produce a functional protein.

The recent FDA approval of the antisense oligonucleotide nusinersen, marketed as SPINRAZA[®], provides the first effective means of promoting *SMN2* alternative splicing and subsequent SMA treatment. Consequently, there is increased interest in both newborn and carrier screening for SMA (-1:50 carrier incidence). Herein we report the performance of prototype AmplideX[®] PCR/CE *SMN1* and *SMN2* reagents, quantitative assays for the two critical *SMN* genes that overcome many of the workflow and operational limitations associated with commonly used MLPA-based approaches.

Materials and Methods

For each reaction, 2 μ L of gDNA samples (cell line or whole blood, 10-40 ng/ μ L) were combined with 7.5 μ L of a PCR mastermix (containing buffer, dNTPs, and polymerase) and 5.5 μ L labeled primer mastermix within 96-well PCR plates. Amplification was performed on a Veriti Thermal Cycler (Thermo Fisher) and resolved using capillary electrophoresis (CE).

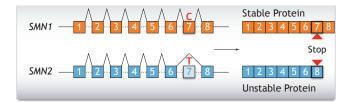


Figure 1. SMN1 and SMN2 Maturation. The sequences differ within their exons by a single base (red). While transcriptionally silent, this alteration leads to SMN2 exon 7 skipping/loss, utilization of an alternative downstream stop codon, and resultant protein degradation.

Samples were injected for 20 sec/2.5 kV and run for 20 minutes/19.5kV on a 3500xL Genetic Analyzer (Thermo Fisher). Output data were visualized with GeneMapper™ Software 5 (Thermo Fisher) and calculations for the copy number performed in Excel.

FMR1 triplet repeat amplification was performed using an AmplideX[®] PCR/CE *FMR1* Kit[†] (Asuragen) following the manufacturer's protocol. 2 μ L ea of *FMR1* and *SMN1* PCR amplicons were then combined with HiDi/Rox (15 μ L total) and injected as noted above.