A Simple and Versatile Next-Generation Sequencing Technology for Co-Detection of RNA Structural Variants and DNA Mutations in Lung Cancer

Huiping Zhu, Shobha Gokul, Melissa Church, Kevin Kelnar, and Gary J Latham Asuragen, Inc., Austin, TX

Summarv

• Non-small cell lung cancer (NSCLC) demonstrates remarkable molecular diversity, highlighting the need to detect both RNA and DNA markers for personalized medicine.

• We describe the detection of both RNA and DNA variants by combining QuantideX® NGS RNA Lung Cancer Kit* and QuantideX® NGS DNA Hotspot 21 Kit*† libraries on a single MiSeq flow cell.

• Two different library pooling methods were used to accommodate up to 24 DNA and 24 RNA libraries prepared from FFPE tumor samples. For both methods, all libraries produced variant calls consistent with the expected results using a streamlined workflow that required less than three days from sampleto-answer.

Introduction

Mutational categories associated with NSCLC initiation and progression include single-nucleotide variants (SNVs), DNA insertions and deletions (INDELs) and copy number variations (CNVs), as well as RNA fusions and post-transcriptional splicing variants. This diversity challenges profiling of cancer samples because not all genetic alterations are addressable by the same molecular methods. For instance, gene fusions may be assessed using fluorescence in situ hybridization (FISH) break-apart probes, immunohistochemistry (IHC) staining, and, more recently, next-generation sequencing (NGS), yet still different assays and technologies may be used to interrogate SNVs, INDELs, and/or CNVs. Therefore, comprehensive molecular analysis often requires the use of multiple test methods. Even if the same method is used, such as NGS, different workflows, detection modalities, and analyses are often required. This fragmentation is inefficient, creating additional material and labor costs, and erecting barriers to broader adoption. To address these issues, we describe a targeted NGS approach with system-level integration that can detect RNA and DNA variants using a single, unified workflow.

1A						1B	
	Quan	tideX® NGS RNA	Lung Cance			Quantid	leX® NGS DNA Hotsp
3' Fusion Genes	# of Fusions	3'/5' Imbalance		Exon Skipping Event			Gene Coverage
ALK	53	AL	ALK		MET e13:e14		FGFR1
ROS1	22	RO	ROS1		MET e14:e15		FGFR3
RET	12	RET		MET e13:e15		AKT1	FLT3
FGFR3	7	NTE	RK1			AKT2	HRAS
NTRK1	4		mRNA Expression Targets			BRAF	IDH1
NTRK3	3	ABCB1	ESR1	MSLN	TERT	EGFR	IDH2
NRG1	2	BRCA1	FGFR1	PDCD1	TLE3	ERBB2	JAK2
FGFR1	1	CD2741	FGFR2	PDCD1LG2 ²	TOP1		
FGFR2	1	CDKN2A	IFNGR	PTEN	TUBB3		
MBIP	1	CTLA4	ISG15	RRM1	TYMS		
PDGFRA	1	ERCC1	MET	TDP1	Controls		
1PD-L1							

2PD-12

Table 1. OuantideX® NGS Panels. A) The QuantideX® NGS RNA Lung Cancer Kit interrogates fusions, exon skipping variants, and expression targets frequently observed in NSCLC. The panel targets 107 NSCLC-relevant fusions, ALK , RET, ROS1 and NTRK1 3'/5' imbalances, MET exon 14 skipping events (e13:e15), 23 mRNA targets, and three endogenous control transcripts. B) The QuantideX® NGS DNA Hotspot 21 Kit interrogates 46 gene regions within 21 genes with high clinical significance and potentially actionable content in various human cancers. The panel reports >1,500 known COSMIC variants, including SNVs and small INDELs.

*RUO. Not for use in diagnostic procedures. 'CE marked. For US export only. Conflict of Interest Disclosure: All authors have the financial relationship to disclose: Employment by Asurage Presented at IASLC 19th WCLC, 2018, #14087

Materials and Methods

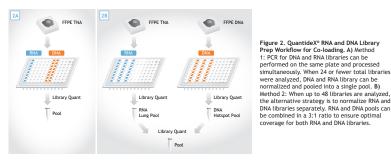
KIT

KRAS

MET

NRAS

PDGFRA


РІКЗСА

RET

Total nucleic acid (TNA) and DNA was isolated from formalin-fixed, paraffin-embedded (FFPE) NSCLC biopsies, Sequencing libraries were prepared by using the QuantideX® NGS RNA Lung Cancer Kit or the QuantideX® NGS DNA Hotspot 21 Kit, and the resultant libraries were combined following the library pooling strategies below. The final concentration value for both pooling method was 2.5 nM for Illumina MiSeq® System loading. Study 1 assessed equimolar input: Sixteen DNA Hotspot 21 libraries, eight RNA Lung Cancer libraries, and controls were mixed in equimolar amounts based on concentrations determined by Library Quant analysis (included in kit). The pool was loaded onto a single flow cell for sequencing analysis. Study 2 assessed weighted input: Twenty-two DNA Hotspot 21 libraries, twenty-two RNA Lung Cancer libraries, and a positive control (PC) and no template control (NTC) for each kit were mixed in separate RNA- and DNA-based pools. Each pool was quantified and then combined at a 3:1 ratio of RNA:DNA. The pool was loaded onto a single flow cell for sequencing analysis. Data analysis was performed using QuantideX® NGS Reporter, an integrated informatics processing and data reporting pipeline that incorporates pre-analytical QC data into the variant calling algorithm.

	QuantideX® NGS RNA Lung Cancer Kit*	QuantideX® NGS DNA Hotspot 21 Kit*†
Reverse Transcription	5 μL Sample, 10 μL Reaction	
QC Assay	2 μL RT Product, 10 μL Reaction	2 μL Sample, 10 μL Reaction
Gene-Specific PCR	4 μL cDNA, 10 μL Reaction	4 μL DNA, 10 μL Reaction
Tagging PCR	2 µL GS-PCR Produ	uct, 15 µL Reaction
Library Purification	10 µL Tagged Produ	uct + Pure Prep Beads
Library Quantification	2 µL Diluted Purified P	Product, 10 µL Reaction
Normalization and Pooling	2.5 nM Com	bin <mark>ed Library</mark>
Denature, Dilute and Load	15 μL Pool + 2 μL 1N NaOH	+ 3 µL 1 nM PhiX Control v3
Sequencing	MiSe	eq Run 40 hours
Data Analysis	Analysis and Reporting	Analysis and Reporting

Figure 1. QuantideX® RNA and DNA Co-loading Workflow Overview.

Results

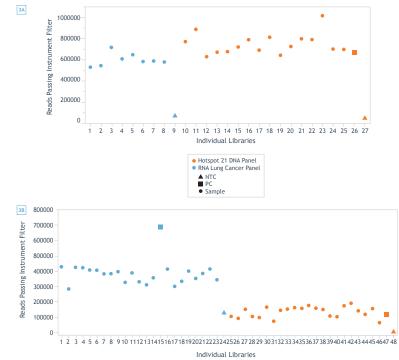


Figure 3. Reads Passing Instrument Filter, Paired-End Reads Passing Instrument Filter for RNA Lung Panel Libraries vs DNA Hotspot 21 Libraries, For illustrative purposes, NTC libraries were included; these demonstrated low coverage as expected, A) In study 1, the number of reads passing instrument filters was >500,000 for each of the eight RNA Lung Cancer libraries and the 16 DNA Hotspot 21 libraries as well as the DNA PC. B) In study 2, the average number of reads for the RNA Lung panel libraries was 383,819 compared to 129,840 for the DNA Hotspot 21 libraries Coverage across libraries within each panel was uniform except for the RNA Lung Cancer PC. This PC showed elevated coverage due to a high library concentration and the minimum volume input requirement of 2 ul for pooling.

4A Study 1			DNA Hotspot 21 Panel			
			Library	Variant		
			Library 9	KRAS p.G12V		
			Library 10	PIK3CA p.N1044K • EGFR p.E746_A750del		
RNA Lung Cancer Panel			Library 11	KRAS p.G12C		
Library	Fusion or Variant	Imbalance	Library 12	EGFR p.D770_N771insSVD		
Library 1	EML4-ALK	ALK	Library 13	EGFR p.L858R		
Library 2	MET 13-15	-	Library 14	PIK3CA p.E542K		
Library 3	CCDC6-RET	RET	Library 15	PIK3CA p.E545K • PIK3CA p.H1047R		
Library 4	CD74-NRG1	-	Library 16	PIK3CA p.E542K • BRAF p.V600E		
Library 5-8	Wild-type	-	Library 17	KRAS p.G12C • PIK3CA p.E545K		
			Library 18	BRAF p.V600E		
			Library 19	NRAS p.Q61K		
			Library 20	KRAS p.G12A		
			Library 21-24	Wild-type		

4B Study 2			DNA Hotspot 21 Panel				
			Library	Variant	Library	Variant	
RNA Lung Cancer Panel			Library 53	EGFR p.G719A	Library 64	KRAS p.G13D	
Library	Fusion or Variant	Imbalance	Library 54	KRAS p.G12V, IDH1 p.R132L	Library 65	KRAS p.G12D	
Library 30	EML4-ALK	ALK	LIDIARY 54	JAK2 p.V617F	LIDIALY 05	PIK3CA p.E542K	
Library 31	KIF58-RET	RET	Library 55	KRAS p.A146T	Library 66	KRAS p.G12V • PIK3CA p.E545K	
Library 32	EML4-ALK	-	Library 56	EGFR p.N771_P772insT	Library 67	KRAS p.G12D	
Library 33	MET 13-15	-	Library 57	KRAS p.G12D • PIK3CA p.Q546K	Library 68	KRAS p.Q61H	
Library 34	MET 13-15	-	Library 58	KRAS p.G12V	Library 69	KRAS p.G12C	
Library 35	CCDC6-RET	RET	Library 59	KRAS p.G12A	Library 70	KRAS p.G12D	
Library 36	CD74-NRG1	-	Library 60	KRAS p.G12C	Library 71	KRAS p.G12V	
Library 37-52	Wild-type	-	Library 61	KRAS p.G12D	Library 72	KRAS p.G12A	
			Library 62	KRAS p.G12D	Library 73	KRAS p.G12C • JAK2 p.V617F	
			Library 63	KRAS p.G12D • PIK3CA p.E545K	Library 74	EGFR p.H773_V774insAH	

Table 2. Fusion, Imbalance and Variant Calls. All RNA Lung Cancer libraries and DNA Hotspot 21 libraries were 100% concordant with expected results (mutations in EGFR, RAS, PIK3CA, JAK2, IDH1 and BRAF, along with fusions in ALK, RET, and NRG1 and skipped METex14), including wild-type and controls (positive and no template). Variant calls were 100% concordant with independent results and included. A) In study 1, 16 DNA libraries and eight RNA libraries were analyzed along with controls. RNA fusions were called with 189 to 11,274 reads and DNA mutations were detected down to 5% allele frequency. No call was made for the four negative RNA samples or the three negative DNA samples. B) In study 2, 22 DNA libraries and 22 RNA libraries were analyzed along with controls. RNA fusions were called with 82 to 11,965 reads and DNA mutations were detected down to 5% allele frequency. No call was made for the 16 negative RNA samples.

- QuantideX® NGS RNA Lung Cancer and DNA Hotspot 21 libraries could be processed simultaneously and pooled sample-by-sample to generate accurate results when no more than 24 samples were tested. To support up to 48 libraries per flow cell, libraries from the two panels could be formulated in separate RNA- and DNA-based pools and then combined at a 3:1 ratio.
- The results demonstrate that QuantideX[®] NGS libraries can be combined to accurately detect multiple categories of FFPE RNA and DNA variants in less than three days.
- The simplicity and speed of the approach, coupled with the standardized workflow, has potential to increase the accessibility of NGS analysis and accelerate turnaround time for NSCLC molecular results.

