Two-site Evaluation of a One-tube PCR/CE Assay that Resolves CAG Length Polymorphisms in Exon 1 of the HTT Gene

Sarah Statt^{1*}, EunRan Suh^{2*}, Julie R Thibert¹, Aaron D Bossler³, Vivianna M Van Deerlin², and Gary J Latham¹ ¹Asuragen, Inc., Austin, TX; ²Dept. of Pathology and Lab Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; ³Dept. of Pathology, University of Iowa, Iowa City, IA

Summary

- Huntington disease (HD) is a slowly progressive, hereditary fatal brain disease caused by a CAG expansion in HTT Exon 1; HTT genotyping is challenged by known rare polymorphisms surrounding the CAG repeat region that can cause allelic dropout.
- We present the evaluation of a streamlined, single-tube AmplideX[®] PCR/CE assav[†] for the amplification of CAG repeat polymorphisms in Exon 1 of the HTT gene across two sites (Site 1: Asuragen, Site 2: University of Pennsylvania).
- Both sites successfully genotyped all repeat alleles in all samples. Expansions with <200 repeats were resolved well within recommended precision limits of CAG repeat sizing accuracy, and alleles with >200 repeats were reliably flagged.
- In a cohort of 37 samples, Site 2 achieved 100% concordance with Site 1 and an external reference method (University of Iowa) across all repeat categories and genotypes.

Introduction

Huntington disease (HD) is a progressive brain disorder caused by expansion of an unstable, trinucleotide CAG or poly-Q repeat in exon 1 of the huntingtin (HTT) gene. Accurate determination of CAG repeats is critical for molecular diagnosis of HD. HD CAG expansion is typically identified using PCR-based methods. Polymorphisms near the CAG tract can lead to mis-priming and inaccuracies in allele sizing. Here we describe a robust, rapid and accurate PCR assay[†] evaluated at two sites that can resolve HTT zygosity and enable accurate repeat quantification even in the presence of known gene polymorphisms.

Materials and Methods

A prototype assay[†] was evaluated at Asuragen (Site 1) and the University of Pennsylvania (Site 2). Both sites evaluated a common set of cell-line samples and NIST controls¹ that covered a range from 15 to 250 CAGs. Each site also assessed peripheral blood samples independently. Site 2 evaluated an additional 19 expanded samples obtained from the University of Iowa previously genotyped using a reference method comparing the labeled CAG-containing PCR products to ddA and ddT sequencing products utilizing 7% denaturing acrylamide sequencing gels. Additionally, Ultramer® DNA Oligonucleotides (IDT) were synthesized as controls containing well-characterized HTT SNPs between the polymorphic CAG and CCG regions associated with allele dropout in other PCR-based detection methods. Sample gDNA and/or Ultramers were PCR amplified using AmplideX PCR technology and amplicons were resolved by capillary electrophoresis (CE) on either a 3130xl or 3500xL Genetic Analyzer (Thermo Fisher). Genotypes were determined from the mobility of target peaks relative to a calibration curve.

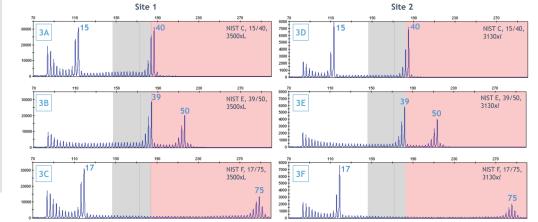


Figure 1. HTT Gene and Risk Alleles. A) CAG repeat length and associated HD boundary categories: Normal allele (<26 CAGs), Intermediate (27-35 CAGs), Reduced Penetrance (36-39 CAGs), Expanded (>40 CAGs)², B) Diagram of the HTT gene located in exon 1 with the outlined location of the polymorphic CAG and CCG regions with the interjecting 12-bp spacer sequence

Figure 2. Time-motion Analysis of the AmplideX PCR/CE HTT Assay' Workflow. Total hands on time is ~65 min for 24 samples with one CE injection on the 3500xL Genetic Analyzer

Results

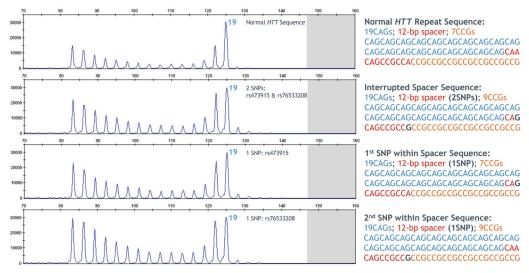


Figure 3. Accurate Genotyping of CAG Repeat Length in NIST HTT Disease Controls Across 2 Sites. 6 NIST controls (SRM 2393) at 16-24 ng per reaction were used in the prototype HTT PCR/CE assay[†] across both sites. Representative electropherograms are presented for A) Control C 15/40 [site 1], B) Control E 39/50 [site 1], C) Control F 17/75 [site 1], D) Control C 15/40 [site 2], E) Control E 39/50 [site 2] and F) Control F 17/75 [site 2].

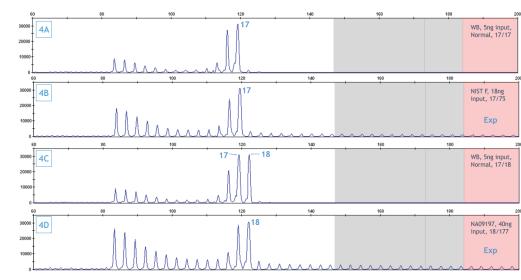
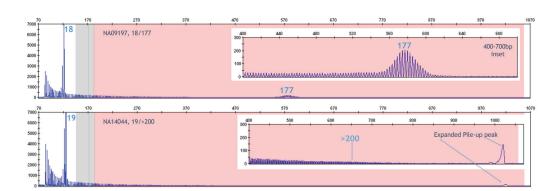



Figure 4. Zygosity Resolution. The prototype assay can determine allele sizing across a variety of sample types, inputs and zygosity: A) Whole Blood (WB) homozygous sample 17/17, B) cell line NIST F 17/75 sample or 17/exp, C) WB heterozygous sample 17/18, and D) cell line NA09197 (Coriell) sample 18/177 or 18/exp. 3500xL Site 1 data is shown

data run on the 3500xL is shown.

		Normal	Intermediate	Reduced Penetrance	Expanded	Categorical Concordance	Allele Genotype Concordance
HTT Genotype, Prototype Assay [†]	Normal	10	-	-	-	10/10 (100%)	20/20 (100%)
	Intermediate	-	2	-	-	2/2 (100%)	4/4 (100%)
	Reduced Penetrance	-		2	-	2/2 (100%)	4/4 (100%)
- 6	Expanded	-			23	23/23 (100%)	46/46 (100%)

Table 1. Call Concordance Across 37 Samples. Site 2 achieved 100% concordance with Site 1 results within ACMG precision guidelines² using the prototype HTT PCR/CE assay¹. Genotypes were compared to an external reference method (University of lowa) across both repeat length category and genotype.

Conclusions

References

1. Kalman, L. et al. Development of genomic reference materials for Huntington disease genetic testing. Genetics in Medicine; 9, 719-723 (2007) Bean, L. et al. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 editions: technical standards and guideli Huntington disease. Genetics in Medicine; 16, e2 (2014).

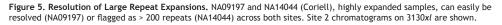


Figure 6. Accurate Genotyping of Synthetic Sequences Containing Well-characterized HTT SNPs. Ultramer DNA Oligonucleotides (IDT) were synthesized with well-characterized HTT SNPs located between the polymorphic CAG and the nonclinically relevant CCG repeat regions as outlined in the sequences to the right of the corresponding electrophorograms. Site 1

• A rapid, single-tube HTT PCR/CE assay[†] was successfully evaluated at two laboratories. • A total of 37 Normal, Intermediate, Reduced Penetrance and Expanded samples were accurately genotyped at high resolution at both sites.

• The assay flagged very large expansions (>200 CAGs), resolved heterozygous and homozygous samples, and accommodated polymorphic regions and known SNPs. • This assay has potential to remedy concerns of false-negative results with some existing HTT technologies, and streamline clinical research in Huntington's disease.

