
Summary
• PCR/Capillary Electrophoresis (CE) trace interpretation requires trained manual operators 

or customized heuristic methods.
• We present FMR1 DeepNet*, a deep learning based prototype for automated genotyping 

short tandem repeat (STR) variants in FMR1.
• In a validation set of residual clinical specimens, FMR1 DeepNet classified STR alleles with 

≥96% sensitivity and ≥97% PPV. The categorical accuracy of the model on these specimens 
was ≥97%.

Introduction
Approximately 1 in 200 females and 1 in 450 males are carriers of fragile X syndrome (FXS) in the US1. 
High-throughput carrier screening and diagnostic testing requires an accurate and robust method for FMR1 
genotyping, which has been historically problematic due to the difficult-to-amplify CGG repeat that causes 
FXS in >99% of cases. Advances in PCR/CE technologies have enabled the amplification and sizing of these 
triplet repeats within the clinically-relevant range. However, existing CE trace interpretation requires 
trained manual operators or computational heuristic methods tailored to signal idiosyncrasies and peak 
morphologies. To address this issue, we developed a deep learning algorithm that can automate reliable 
determination of the FMR1 STR genotype.

Methods
Blood and cell-line specimens were collected and processed with the AmplideX® PCR/CE FMR1 Kit**,†. Multi-
channel CE relative fluorescence unit values (RFU) were pre-processed, sized, and scaled; candidate peaks 
above sample- and location-specific background thresholds were extracted for consideration. A multi-
layered, multi-output convolutional neural network (CNN) classifier was developed to differentiate FMR1 
STR peaks from background noise (Figure 1). Repeat length was used to classify specimens into normal/
intermediate (<55 repeat), premutation (≥55 repeat and ≤200 repeat), and full-mutation (>200 repeat) 
categories. The trained CNN was evaluated on two independent clinical validation cohorts with reference 
FMR1 genotypes assessed using a secondary PCR/CE technique (dual-PCR) and/or Southern blot analysis.

*Proof-of-concept data only. Future availability and performance cannot be ensured. **CE-IVD for US export only.  
†Research Use Only. Not for use in diagnostic procedures
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Results 

Conclusions
• FMR1 DeepNet is a robust and highly accurate deep learning system to detect, size, and 

categorize FMR1 repeat lengths from PCR/CE data.

• FMR1 DeepNet is well suited for high volume settings, offering advantages over manual 
interpretation in terms of speed, convenience, and consistency.

• Our approach has the potential to expand FXS screening and may also improve PCR/CE 
analysis of other repetitive, and non-repetitive, genetic markers.

Figure 1. A) Primer design for targeting FMR1 STR pattern. B) Fluorescence signal output from Applied Biosystems 3500 Genetic 
Analyzer and Asuragen’s AmplideX PCR/CE FMR1 Kit depicted in electropherogram format. This example contains a heterozygous 
female full-mutation sample with a 31|>200 genotype. Background noise and PCR artifacts resembling peaks are labelled “Not 
Peak.” C) CE peaks above sample-specific background-noise thresholds were extracted and annotated into repeat-size based 
categories. The signals were treated as 1-dimensional images and passed through a series of convolutional and fully connected 
layers. The final layer returned a probability score for both “Peak” and “Not Peak” categories. Peaks were categorized into 
“Normal,” “Intermediate,” “pre-mutation,” and “full mutation” classes based upon x-axis location in electropherogram.

Table 1. The training cohort contained 3,711 internally validated samples, consisting of 38.5% normal/intermediate, 45.9% 
premutation, and 15.6% full mutation classifications. Peaks were annotated by manual review process and confirmed by automated 
heuristic techniques. Based upon maximum STR size, each sample was assigned clinically relevant categories. The pipeline took 
130.5 minutes to execute peak extraction, signal pre-processing, and CNN training.

Table 4. FMR1 DeepNet achieved >98% categorical agreement with the dual-PCR reference method for carrier screening-
relevant full/premutation, intermediate, and normal genotypes. Given 99.5% concordance with the manually annotated dual-PCR 
cohort, our CNN based genotyping method can be considered a clinically viable technique for PCR/CE peak calling. The “Full/
premutation” misclassification was due to an air-bubble artifact that evaded detection during preprocessing.

Table 3. The CNN achieved 97.1% categorical agreement with a Southern blot/Dual-PCR reference method for diagnostic-relevant 
full, premutation, and normal/intermediate genotypes. The CNN failed to detect two low-intensity expanded peaks below 
the 100 RFU background noise threshold. The CNN identified two ”Normal” peaks as 54 repeats but sized them incorrectly as 
“Premutation” (55 repeats). This is a boundary case that reflects a failure on the peak sizing algorithm. The CNN failed to detect 
two low RFU (<5,000) premutation peaks in two male samples. We attribute these false negatives to their peak morphology not 
being represented in the training cohort.
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Genotype Category
# CGG

Normal/Intermediate
<55

Premutation
55-200

Expanded
>200 Total

FMR1 DeepNet
(training cohort) 1428 1704 579 3711

Table 2. Our trained FMR1 DeepNet CNN model was validated upon 4,462 peaks extracted from two independent clinically 
derived cohorts. Each sample genotype was confirmed by either dual-PCR or Southern blot and dual-PCR comparison method. The 
algorithm correctly identified 722 out of 739 (97.7%) expected positive FMR1 peaks. The algorithm misclassified 19 out of 3265 
(0.5%) expected negative peaks. When combining both independently validated clinical cohorts, FMR1 DeepNet achieves 97.7% 
sensitivity and 97.4% PPV.

Southern Blot/Dual-PCR 
Comparison Cohort

Dual-PCR 
Comparison Cohort Total

Number of specimens 207 207 414

Number of Extracted Peaks 1,972 2,490 4,462

True Positive 322 400 722

False Negative 12 5 17

False Positive 8 11 19

Sensitivity 96.4% 98.8% 97.7%

PPV 97.6% 97.3% 97.4%

Southern Blot/Dual-PCR Comparison Cohort

FMR1 DeepNet 
Prediction

Genotype Category
# CGG

Normal/Intermediate 
<55

Premutation
55-200

Expanded
>200 Total

Normal/Intermediate
<55 67 0 1 68

Premutation
55-200 2 67 1 70

Expanded
>200 0 0 67 67

No Peaks 0 2 0 2

Total 69 69 69 207

Dual-PCR Comparison Cohort

FMR1 DeepNet 
Prediction

Genotype Category
# CGG

Normal
<45

Intermediate
45-54

Full/premutation
>54 Total

Normal
<45 68 0 0 68

Intermediate
45-54 0 70 0 70

Full/premutation
>54 1 0 68 69

Total 69 70 68 207
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Figure 2. There is no statistical difference between the repeat length reported by the DeepNet CNN and the independent dual-
PCR reference method (Passing-Bablok regression 95% bootstrap CIs for slope (1.00, 1.00) and intercept (0.00, 0.00)). A) Estimated 
CGG repeat number for the reference method (x-axis) versus the CNN (y-axis) for all alleles <200 CGGs is plotted. The non-
parametric Passing-Bablok regression line is plotted. B) Bland-Altman bias plot shows minimal bias present in the CNN output 
(average between the two methods on the x-axis, difference on the y-axis). The extreme outlier is the normal that was miscalled 
as a full/premutation as noted in Table 4. 
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